L(s) = 1 | + (−0.5 − 0.866i)2-s + (−0.499 + 0.866i)4-s + (0.5 − 0.866i)5-s + 0.999·8-s − 0.999·10-s + (−0.5 − 0.866i)11-s + (−0.5 + 0.866i)13-s + (−0.5 − 0.866i)16-s − 17-s + (0.499 + 0.866i)20-s + (−0.499 + 0.866i)22-s + (0.5 − 0.866i)23-s + (−0.499 − 0.866i)25-s + 0.999·26-s + (−0.5 − 0.866i)29-s + ⋯ |
L(s) = 1 | + (−0.5 − 0.866i)2-s + (−0.499 + 0.866i)4-s + (0.5 − 0.866i)5-s + 0.999·8-s − 0.999·10-s + (−0.5 − 0.866i)11-s + (−0.5 + 0.866i)13-s + (−0.5 − 0.866i)16-s − 17-s + (0.499 + 0.866i)20-s + (−0.499 + 0.866i)22-s + (0.5 − 0.866i)23-s + (−0.499 − 0.866i)25-s + 0.999·26-s + (−0.5 − 0.866i)29-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 3240 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.984 + 0.173i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 3240 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.984 + 0.173i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(0.6555024694\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.6555024694\) |
\(L(1)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (0.5 + 0.866i)T \) |
| 3 | \( 1 \) |
| 5 | \( 1 + (-0.5 + 0.866i)T \) |
good | 7 | \( 1 + (0.5 - 0.866i)T^{2} \) |
| 11 | \( 1 + (0.5 + 0.866i)T + (-0.5 + 0.866i)T^{2} \) |
| 13 | \( 1 + (0.5 - 0.866i)T + (-0.5 - 0.866i)T^{2} \) |
| 17 | \( 1 + T + T^{2} \) |
| 19 | \( 1 - T^{2} \) |
| 23 | \( 1 + (-0.5 + 0.866i)T + (-0.5 - 0.866i)T^{2} \) |
| 29 | \( 1 + (0.5 + 0.866i)T + (-0.5 + 0.866i)T^{2} \) |
| 31 | \( 1 + (-0.5 + 0.866i)T + (-0.5 - 0.866i)T^{2} \) |
| 37 | \( 1 + 2T + T^{2} \) |
| 41 | \( 1 + (0.5 + 0.866i)T^{2} \) |
| 43 | \( 1 + (0.5 + 0.866i)T + (-0.5 + 0.866i)T^{2} \) |
| 47 | \( 1 + (-0.5 - 0.866i)T + (-0.5 + 0.866i)T^{2} \) |
| 53 | \( 1 - T^{2} \) |
| 59 | \( 1 + (-1 + 1.73i)T + (-0.5 - 0.866i)T^{2} \) |
| 61 | \( 1 + (0.5 - 0.866i)T^{2} \) |
| 67 | \( 1 + (-1 + 1.73i)T + (-0.5 - 0.866i)T^{2} \) |
| 71 | \( 1 - T^{2} \) |
| 73 | \( 1 - T^{2} \) |
| 79 | \( 1 + (-0.5 - 0.866i)T + (-0.5 + 0.866i)T^{2} \) |
| 83 | \( 1 + (0.5 - 0.866i)T^{2} \) |
| 89 | \( 1 - T^{2} \) |
| 97 | \( 1 + (0.5 - 0.866i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−8.536995632400850000115093830754, −8.186921106169253930510932042461, −7.09740091834331479366786297305, −6.25646073826014993535611414877, −5.16384300675554929154509548313, −4.56780495873831782646466257111, −3.69247992007079660168033112125, −2.50195402673133539025340630028, −1.85718105529215349721674279729, −0.44841016151069281578945038242,
1.62701644104950975271333890849, 2.61451903850541710074882236799, 3.74451570577425587629406938305, 5.10179098569669817114853987564, 5.29391189981654398968661497272, 6.42039318673403441028219751063, 7.11382867356695623465213506854, 7.38973233283220143214869712989, 8.453653159677570187174207579985, 9.067042929703856636288672322902