Properties

Label 2-3240-1.1-c1-0-20
Degree $2$
Conductor $3240$
Sign $1$
Analytic cond. $25.8715$
Root an. cond. $5.08640$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 5-s + 3.44·7-s + 2·17-s − 6.89·19-s + 7.44·23-s + 25-s + 1.89·29-s + 1.10·31-s + 3.44·35-s − 6·37-s + 9.89·41-s + 11.7·43-s + 9.44·47-s + 4.89·49-s − 7.79·53-s + 1.10·59-s − 3·61-s − 13.2·67-s − 9.79·71-s + 13.7·73-s − 6.89·79-s + 5.44·83-s + 2·85-s − 2.79·89-s − 6.89·95-s + 2·97-s + 2·101-s + ⋯
L(s)  = 1  + 0.447·5-s + 1.30·7-s + 0.485·17-s − 1.58·19-s + 1.55·23-s + 0.200·25-s + 0.352·29-s + 0.197·31-s + 0.583·35-s − 0.986·37-s + 1.54·41-s + 1.79·43-s + 1.37·47-s + 0.699·49-s − 1.07·53-s + 0.143·59-s − 0.384·61-s − 1.61·67-s − 1.16·71-s + 1.61·73-s − 0.776·79-s + 0.598·83-s + 0.216·85-s − 0.296·89-s − 0.707·95-s + 0.203·97-s + 0.199·101-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 3240 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 3240 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(3240\)    =    \(2^{3} \cdot 3^{4} \cdot 5\)
Sign: $1$
Analytic conductor: \(25.8715\)
Root analytic conductor: \(5.08640\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 3240,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(2.497801484\)
\(L(\frac12)\) \(\approx\) \(2.497801484\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 \)
5 \( 1 - T \)
good7 \( 1 - 3.44T + 7T^{2} \)
11 \( 1 + 11T^{2} \)
13 \( 1 + 13T^{2} \)
17 \( 1 - 2T + 17T^{2} \)
19 \( 1 + 6.89T + 19T^{2} \)
23 \( 1 - 7.44T + 23T^{2} \)
29 \( 1 - 1.89T + 29T^{2} \)
31 \( 1 - 1.10T + 31T^{2} \)
37 \( 1 + 6T + 37T^{2} \)
41 \( 1 - 9.89T + 41T^{2} \)
43 \( 1 - 11.7T + 43T^{2} \)
47 \( 1 - 9.44T + 47T^{2} \)
53 \( 1 + 7.79T + 53T^{2} \)
59 \( 1 - 1.10T + 59T^{2} \)
61 \( 1 + 3T + 61T^{2} \)
67 \( 1 + 13.2T + 67T^{2} \)
71 \( 1 + 9.79T + 71T^{2} \)
73 \( 1 - 13.7T + 73T^{2} \)
79 \( 1 + 6.89T + 79T^{2} \)
83 \( 1 - 5.44T + 83T^{2} \)
89 \( 1 + 2.79T + 89T^{2} \)
97 \( 1 - 2T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.810094473244902225863958671273, −7.86872472112905429783454606288, −7.29561105727588080836615868616, −6.32629228830983142066046800463, −5.59886534851593283043038125112, −4.76715643472403162551356374357, −4.18775743972261135793208126128, −2.88796835386999305826815644374, −2.00506994364080859634970460265, −1.01004956177176863900695628427, 1.01004956177176863900695628427, 2.00506994364080859634970460265, 2.88796835386999305826815644374, 4.18775743972261135793208126128, 4.76715643472403162551356374357, 5.59886534851593283043038125112, 6.32629228830983142066046800463, 7.29561105727588080836615868616, 7.86872472112905429783454606288, 8.810094473244902225863958671273

Graph of the $Z$-function along the critical line