Properties

Label 2-3240-1.1-c1-0-12
Degree $2$
Conductor $3240$
Sign $1$
Analytic cond. $25.8715$
Root an. cond. $5.08640$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 5-s − 1.44·7-s + 2·17-s + 2.89·19-s + 2.55·23-s + 25-s − 7.89·29-s + 10.8·31-s − 1.44·35-s − 6·37-s + 0.101·41-s − 7.79·43-s + 4.55·47-s − 4.89·49-s + 11.7·53-s + 10.8·59-s − 3·61-s + 11.2·67-s + 9.79·71-s − 5.79·73-s + 2.89·79-s + 0.550·83-s + 2·85-s + 16.7·89-s + 2.89·95-s + 2·97-s + 2·101-s + ⋯
L(s)  = 1  + 0.447·5-s − 0.547·7-s + 0.485·17-s + 0.665·19-s + 0.531·23-s + 0.200·25-s − 1.46·29-s + 1.95·31-s − 0.245·35-s − 0.986·37-s + 0.0157·41-s − 1.18·43-s + 0.663·47-s − 0.699·49-s + 1.62·53-s + 1.41·59-s − 0.384·61-s + 1.37·67-s + 1.16·71-s − 0.678·73-s + 0.326·79-s + 0.0604·83-s + 0.216·85-s + 1.78·89-s + 0.297·95-s + 0.203·97-s + 0.199·101-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 3240 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 3240 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(3240\)    =    \(2^{3} \cdot 3^{4} \cdot 5\)
Sign: $1$
Analytic conductor: \(25.8715\)
Root analytic conductor: \(5.08640\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 3240,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(1.918843648\)
\(L(\frac12)\) \(\approx\) \(1.918843648\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 \)
5 \( 1 - T \)
good7 \( 1 + 1.44T + 7T^{2} \)
11 \( 1 + 11T^{2} \)
13 \( 1 + 13T^{2} \)
17 \( 1 - 2T + 17T^{2} \)
19 \( 1 - 2.89T + 19T^{2} \)
23 \( 1 - 2.55T + 23T^{2} \)
29 \( 1 + 7.89T + 29T^{2} \)
31 \( 1 - 10.8T + 31T^{2} \)
37 \( 1 + 6T + 37T^{2} \)
41 \( 1 - 0.101T + 41T^{2} \)
43 \( 1 + 7.79T + 43T^{2} \)
47 \( 1 - 4.55T + 47T^{2} \)
53 \( 1 - 11.7T + 53T^{2} \)
59 \( 1 - 10.8T + 59T^{2} \)
61 \( 1 + 3T + 61T^{2} \)
67 \( 1 - 11.2T + 67T^{2} \)
71 \( 1 - 9.79T + 71T^{2} \)
73 \( 1 + 5.79T + 73T^{2} \)
79 \( 1 - 2.89T + 79T^{2} \)
83 \( 1 - 0.550T + 83T^{2} \)
89 \( 1 - 16.7T + 89T^{2} \)
97 \( 1 - 2T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.708854249634062873437283848740, −7.923685810313280565397389556111, −7.05642717890901162506008104396, −6.46727990629738871001075173803, −5.56554023586073573580900961129, −4.99341645588020936344215002534, −3.81827485177166097005396021959, −3.08777468354378049008845670357, −2.07683890516739483340949947699, −0.841177527231864577721067200852, 0.841177527231864577721067200852, 2.07683890516739483340949947699, 3.08777468354378049008845670357, 3.81827485177166097005396021959, 4.99341645588020936344215002534, 5.56554023586073573580900961129, 6.46727990629738871001075173803, 7.05642717890901162506008104396, 7.923685810313280565397389556111, 8.708854249634062873437283848740

Graph of the $Z$-function along the critical line