L(s) = 1 | + 5-s − 1.44·7-s + 2·17-s + 2.89·19-s + 2.55·23-s + 25-s − 7.89·29-s + 10.8·31-s − 1.44·35-s − 6·37-s + 0.101·41-s − 7.79·43-s + 4.55·47-s − 4.89·49-s + 11.7·53-s + 10.8·59-s − 3·61-s + 11.2·67-s + 9.79·71-s − 5.79·73-s + 2.89·79-s + 0.550·83-s + 2·85-s + 16.7·89-s + 2.89·95-s + 2·97-s + 2·101-s + ⋯ |
L(s) = 1 | + 0.447·5-s − 0.547·7-s + 0.485·17-s + 0.665·19-s + 0.531·23-s + 0.200·25-s − 1.46·29-s + 1.95·31-s − 0.245·35-s − 0.986·37-s + 0.0157·41-s − 1.18·43-s + 0.663·47-s − 0.699·49-s + 1.62·53-s + 1.41·59-s − 0.384·61-s + 1.37·67-s + 1.16·71-s − 0.678·73-s + 0.326·79-s + 0.0604·83-s + 0.216·85-s + 1.78·89-s + 0.297·95-s + 0.203·97-s + 0.199·101-s + ⋯ |
Λ(s)=(=(3240s/2ΓC(s)L(s)Λ(2−s)
Λ(s)=(=(3240s/2ΓC(s+1/2)L(s)Λ(1−s)
Particular Values
L(1) |
≈ |
1.918843648 |
L(21) |
≈ |
1.918843648 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 3 | 1 |
| 5 | 1−T |
good | 7 | 1+1.44T+7T2 |
| 11 | 1+11T2 |
| 13 | 1+13T2 |
| 17 | 1−2T+17T2 |
| 19 | 1−2.89T+19T2 |
| 23 | 1−2.55T+23T2 |
| 29 | 1+7.89T+29T2 |
| 31 | 1−10.8T+31T2 |
| 37 | 1+6T+37T2 |
| 41 | 1−0.101T+41T2 |
| 43 | 1+7.79T+43T2 |
| 47 | 1−4.55T+47T2 |
| 53 | 1−11.7T+53T2 |
| 59 | 1−10.8T+59T2 |
| 61 | 1+3T+61T2 |
| 67 | 1−11.2T+67T2 |
| 71 | 1−9.79T+71T2 |
| 73 | 1+5.79T+73T2 |
| 79 | 1−2.89T+79T2 |
| 83 | 1−0.550T+83T2 |
| 89 | 1−16.7T+89T2 |
| 97 | 1−2T+97T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−8.708854249634062873437283848740, −7.923685810313280565397389556111, −7.05642717890901162506008104396, −6.46727990629738871001075173803, −5.56554023586073573580900961129, −4.99341645588020936344215002534, −3.81827485177166097005396021959, −3.08777468354378049008845670357, −2.07683890516739483340949947699, −0.841177527231864577721067200852,
0.841177527231864577721067200852, 2.07683890516739483340949947699, 3.08777468354378049008845670357, 3.81827485177166097005396021959, 4.99341645588020936344215002534, 5.56554023586073573580900961129, 6.46727990629738871001075173803, 7.05642717890901162506008104396, 7.923685810313280565397389556111, 8.708854249634062873437283848740