Properties

Label 2-320-1.1-c3-0-23
Degree $2$
Conductor $320$
Sign $-1$
Analytic cond. $18.8806$
Root an. cond. $4.34518$
Motivic weight $3$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 6·3-s + 5·5-s − 34·7-s + 9·9-s − 16·11-s − 58·13-s + 30·15-s − 70·17-s − 4·19-s − 204·21-s − 134·23-s + 25·25-s − 108·27-s + 242·29-s + 100·31-s − 96·33-s − 170·35-s + 438·37-s − 348·39-s − 138·41-s − 178·43-s + 45·45-s + 22·47-s + 813·49-s − 420·51-s − 162·53-s − 80·55-s + ⋯
L(s)  = 1  + 1.15·3-s + 0.447·5-s − 1.83·7-s + 1/3·9-s − 0.438·11-s − 1.23·13-s + 0.516·15-s − 0.998·17-s − 0.0482·19-s − 2.11·21-s − 1.21·23-s + 1/5·25-s − 0.769·27-s + 1.54·29-s + 0.579·31-s − 0.506·33-s − 0.821·35-s + 1.94·37-s − 1.42·39-s − 0.525·41-s − 0.631·43-s + 0.149·45-s + 0.0682·47-s + 2.37·49-s − 1.15·51-s − 0.419·53-s − 0.196·55-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 320 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 320 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(320\)    =    \(2^{6} \cdot 5\)
Sign: $-1$
Analytic conductor: \(18.8806\)
Root analytic conductor: \(4.34518\)
Motivic weight: \(3\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 320,\ (\ :3/2),\ -1)\)

Particular Values

\(L(2)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
5 \( 1 - p T \)
good3 \( 1 - 2 p T + p^{3} T^{2} \)
7 \( 1 + 34 T + p^{3} T^{2} \)
11 \( 1 + 16 T + p^{3} T^{2} \)
13 \( 1 + 58 T + p^{3} T^{2} \)
17 \( 1 + 70 T + p^{3} T^{2} \)
19 \( 1 + 4 T + p^{3} T^{2} \)
23 \( 1 + 134 T + p^{3} T^{2} \)
29 \( 1 - 242 T + p^{3} T^{2} \)
31 \( 1 - 100 T + p^{3} T^{2} \)
37 \( 1 - 438 T + p^{3} T^{2} \)
41 \( 1 + 138 T + p^{3} T^{2} \)
43 \( 1 + 178 T + p^{3} T^{2} \)
47 \( 1 - 22 T + p^{3} T^{2} \)
53 \( 1 + 162 T + p^{3} T^{2} \)
59 \( 1 - 268 T + p^{3} T^{2} \)
61 \( 1 + 250 T + p^{3} T^{2} \)
67 \( 1 + 422 T + p^{3} T^{2} \)
71 \( 1 + 12 p T + p^{3} T^{2} \)
73 \( 1 - 306 T + p^{3} T^{2} \)
79 \( 1 + 456 T + p^{3} T^{2} \)
83 \( 1 + 434 T + p^{3} T^{2} \)
89 \( 1 + 726 T + p^{3} T^{2} \)
97 \( 1 - 1378 T + p^{3} T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−10.23014463176491978369381799521, −9.781885963717609691940987832204, −8.992234361736871636430047539745, −7.984125124870024250470059182788, −6.84662389215761778858782885596, −5.98525973062276473797780306416, −4.38194918512963248962026338711, −2.99401994143364764477955915129, −2.42446982631790162680635176093, 0, 2.42446982631790162680635176093, 2.99401994143364764477955915129, 4.38194918512963248962026338711, 5.98525973062276473797780306416, 6.84662389215761778858782885596, 7.984125124870024250470059182788, 8.992234361736871636430047539745, 9.781885963717609691940987832204, 10.23014463176491978369381799521

Graph of the $Z$-function along the critical line