| L(s) = 1 | + (0.557 + 0.405i)2-s + (−0.730 + 0.530i)3-s + (−0.471 − 1.44i)4-s + 3.70·5-s − 0.622·6-s + (0.235 + 0.726i)7-s + (0.750 − 2.31i)8-s + (−0.675 + 2.07i)9-s + (2.06 + 1.50i)10-s + (1.27 + 3.91i)11-s + (1.11 + 0.808i)12-s + (−2.35 + 1.71i)13-s + (−0.162 + 0.500i)14-s + (−2.70 + 1.96i)15-s + (−1.11 + 0.807i)16-s + (−0.404 + 1.24i)17-s + ⋯ |
| L(s) = 1 | + (0.394 + 0.286i)2-s + (−0.421 + 0.306i)3-s + (−0.235 − 0.724i)4-s + 1.65·5-s − 0.254·6-s + (0.0891 + 0.274i)7-s + (0.265 − 0.817i)8-s + (−0.225 + 0.692i)9-s + (0.653 + 0.475i)10-s + (0.383 + 1.18i)11-s + (0.321 + 0.233i)12-s + (−0.652 + 0.474i)13-s + (−0.0434 + 0.133i)14-s + (−0.698 + 0.507i)15-s + (−0.277 + 0.201i)16-s + (−0.0980 + 0.301i)17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 961 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.640 - 0.768i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 961 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.640 - 0.768i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
| \(L(1)\) |
\(\approx\) |
\(1.91843 + 0.898712i\) |
| \(L(\frac12)\) |
\(\approx\) |
\(1.91843 + 0.898712i\) |
| \(L(\frac{3}{2})\) |
|
not available |
| \(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
|---|
| bad | 31 | \( 1 \) |
| good | 2 | \( 1 + (-0.557 - 0.405i)T + (0.618 + 1.90i)T^{2} \) |
| 3 | \( 1 + (0.730 - 0.530i)T + (0.927 - 2.85i)T^{2} \) |
| 5 | \( 1 - 3.70T + 5T^{2} \) |
| 7 | \( 1 + (-0.235 - 0.726i)T + (-5.66 + 4.11i)T^{2} \) |
| 11 | \( 1 + (-1.27 - 3.91i)T + (-8.89 + 6.46i)T^{2} \) |
| 13 | \( 1 + (2.35 - 1.71i)T + (4.01 - 12.3i)T^{2} \) |
| 17 | \( 1 + (0.404 - 1.24i)T + (-13.7 - 9.99i)T^{2} \) |
| 19 | \( 1 + (-3.07 - 2.23i)T + (5.87 + 18.0i)T^{2} \) |
| 23 | \( 1 + (-1.01 + 3.12i)T + (-18.6 - 13.5i)T^{2} \) |
| 29 | \( 1 + (-3.96 - 2.87i)T + (8.96 + 27.5i)T^{2} \) |
| 37 | \( 1 - 10.4T + 37T^{2} \) |
| 41 | \( 1 + (0.611 + 0.444i)T + (12.6 + 38.9i)T^{2} \) |
| 43 | \( 1 + (5.79 + 4.20i)T + (13.2 + 40.8i)T^{2} \) |
| 47 | \( 1 + (-0.708 + 0.514i)T + (14.5 - 44.6i)T^{2} \) |
| 53 | \( 1 + (1.10 - 3.40i)T + (-42.8 - 31.1i)T^{2} \) |
| 59 | \( 1 + (0.750 - 0.545i)T + (18.2 - 56.1i)T^{2} \) |
| 61 | \( 1 + 2.31T + 61T^{2} \) |
| 67 | \( 1 + 2.08T + 67T^{2} \) |
| 71 | \( 1 + (2.39 - 7.35i)T + (-57.4 - 41.7i)T^{2} \) |
| 73 | \( 1 + (-1.74 - 5.38i)T + (-59.0 + 42.9i)T^{2} \) |
| 79 | \( 1 + (-4.35 + 13.4i)T + (-63.9 - 46.4i)T^{2} \) |
| 83 | \( 1 + (11.4 + 8.29i)T + (25.6 + 78.9i)T^{2} \) |
| 89 | \( 1 + (-1.37 - 4.21i)T + (-72.0 + 52.3i)T^{2} \) |
| 97 | \( 1 + (1.63 + 5.01i)T + (-78.4 + 57.0i)T^{2} \) |
| show more | |
| show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.06033374139550923725861898938, −9.608998159764387312972521699179, −8.765107445991092254123262211834, −7.29077025566269957957036362090, −6.42337488557881401457034175082, −5.73098388928824096545678459546, −5.01681404084793411080954168572, −4.42517810937677609749124025724, −2.43686632768528485869138414973, −1.55411652555355709711813733558,
1.01526227929697719084339838003, 2.57467426820412527803923390665, 3.33144063043049574747778048643, 4.74331050728883826313471632315, 5.61937509295240985994172197626, 6.27125763611269876321499780774, 7.24711334476776333165193051262, 8.318151916744360555789089541468, 9.272050662663983859327651962561, 9.741847123430036486277625761267