Properties

Label 2-3168-1.1-c1-0-9
Degree $2$
Conductor $3168$
Sign $1$
Analytic cond. $25.2966$
Root an. cond. $5.02957$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2.82·5-s + 3.46·7-s − 11-s − 2.89·13-s + 0.635·17-s + 0.635·19-s + 4.89·23-s + 3.00·25-s − 6.29·29-s + 5.65·31-s − 9.79·35-s + 11.7·37-s − 6.29·41-s − 6.29·43-s − 0.898·47-s + 4.99·49-s − 4.09·53-s + 2.82·55-s + 5.79·59-s + 10.8·61-s + 8.19·65-s + 8.89·71-s + 6·73-s − 3.46·77-s − 4.73·79-s + 5.79·83-s − 1.79·85-s + ⋯
L(s)  = 1  − 1.26·5-s + 1.30·7-s − 0.301·11-s − 0.804·13-s + 0.154·17-s + 0.145·19-s + 1.02·23-s + 0.600·25-s − 1.16·29-s + 1.01·31-s − 1.65·35-s + 1.93·37-s − 0.982·41-s − 0.959·43-s − 0.131·47-s + 0.714·49-s − 0.563·53-s + 0.381·55-s + 0.754·59-s + 1.39·61-s + 1.01·65-s + 1.05·71-s + 0.702·73-s − 0.394·77-s − 0.532·79-s + 0.636·83-s − 0.195·85-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 3168 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 3168 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(3168\)    =    \(2^{5} \cdot 3^{2} \cdot 11\)
Sign: $1$
Analytic conductor: \(25.2966\)
Root analytic conductor: \(5.02957\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 3168,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(1.492553690\)
\(L(\frac12)\) \(\approx\) \(1.492553690\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 \)
11 \( 1 + T \)
good5 \( 1 + 2.82T + 5T^{2} \)
7 \( 1 - 3.46T + 7T^{2} \)
13 \( 1 + 2.89T + 13T^{2} \)
17 \( 1 - 0.635T + 17T^{2} \)
19 \( 1 - 0.635T + 19T^{2} \)
23 \( 1 - 4.89T + 23T^{2} \)
29 \( 1 + 6.29T + 29T^{2} \)
31 \( 1 - 5.65T + 31T^{2} \)
37 \( 1 - 11.7T + 37T^{2} \)
41 \( 1 + 6.29T + 41T^{2} \)
43 \( 1 + 6.29T + 43T^{2} \)
47 \( 1 + 0.898T + 47T^{2} \)
53 \( 1 + 4.09T + 53T^{2} \)
59 \( 1 - 5.79T + 59T^{2} \)
61 \( 1 - 10.8T + 61T^{2} \)
67 \( 1 + 67T^{2} \)
71 \( 1 - 8.89T + 71T^{2} \)
73 \( 1 - 6T + 73T^{2} \)
79 \( 1 + 4.73T + 79T^{2} \)
83 \( 1 - 5.79T + 83T^{2} \)
89 \( 1 - 11.3T + 89T^{2} \)
97 \( 1 - 10T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.368032499501396845683948322217, −7.943518498802434992317503263963, −7.42992758432627514831461982775, −6.61003068966412737121765355911, −5.32694347678764857808983571835, −4.82791375944546040952834733745, −4.08335537641332017147662208604, −3.13009829133612173146307860230, −2.04868415354981813860767216608, −0.73943232627439840765552522754, 0.73943232627439840765552522754, 2.04868415354981813860767216608, 3.13009829133612173146307860230, 4.08335537641332017147662208604, 4.82791375944546040952834733745, 5.32694347678764857808983571835, 6.61003068966412737121765355911, 7.42992758432627514831461982775, 7.943518498802434992317503263963, 8.368032499501396845683948322217

Graph of the $Z$-function along the critical line