Properties

Label 2-3168-1.1-c1-0-37
Degree $2$
Conductor $3168$
Sign $-1$
Analytic cond. $25.2966$
Root an. cond. $5.02957$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 1.23·5-s − 3.23·7-s − 11-s + 5.23·13-s + 4.47·17-s − 6.47·19-s − 5.70·23-s − 3.47·25-s − 8.47·29-s − 4.00·35-s + 6·37-s − 10.9·41-s + 12.9·43-s + 5.70·47-s + 3.47·49-s − 6.76·53-s − 1.23·55-s − 5.52·59-s + 11.7·61-s + 6.47·65-s − 8·67-s − 5.70·71-s − 6·73-s + 3.23·77-s − 1.70·79-s + 4.94·83-s + 5.52·85-s + ⋯
L(s)  = 1  + 0.552·5-s − 1.22·7-s − 0.301·11-s + 1.45·13-s + 1.08·17-s − 1.48·19-s − 1.19·23-s − 0.694·25-s − 1.57·29-s − 0.676·35-s + 0.986·37-s − 1.70·41-s + 1.97·43-s + 0.832·47-s + 0.496·49-s − 0.929·53-s − 0.166·55-s − 0.719·59-s + 1.49·61-s + 0.802·65-s − 0.977·67-s − 0.677·71-s − 0.702·73-s + 0.368·77-s − 0.192·79-s + 0.542·83-s + 0.599·85-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 3168 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 3168 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(3168\)    =    \(2^{5} \cdot 3^{2} \cdot 11\)
Sign: $-1$
Analytic conductor: \(25.2966\)
Root analytic conductor: \(5.02957\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 3168,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 \)
11 \( 1 + T \)
good5 \( 1 - 1.23T + 5T^{2} \)
7 \( 1 + 3.23T + 7T^{2} \)
13 \( 1 - 5.23T + 13T^{2} \)
17 \( 1 - 4.47T + 17T^{2} \)
19 \( 1 + 6.47T + 19T^{2} \)
23 \( 1 + 5.70T + 23T^{2} \)
29 \( 1 + 8.47T + 29T^{2} \)
31 \( 1 + 31T^{2} \)
37 \( 1 - 6T + 37T^{2} \)
41 \( 1 + 10.9T + 41T^{2} \)
43 \( 1 - 12.9T + 43T^{2} \)
47 \( 1 - 5.70T + 47T^{2} \)
53 \( 1 + 6.76T + 53T^{2} \)
59 \( 1 + 5.52T + 59T^{2} \)
61 \( 1 - 11.7T + 61T^{2} \)
67 \( 1 + 8T + 67T^{2} \)
71 \( 1 + 5.70T + 71T^{2} \)
73 \( 1 + 6T + 73T^{2} \)
79 \( 1 + 1.70T + 79T^{2} \)
83 \( 1 - 4.94T + 83T^{2} \)
89 \( 1 + 2T + 89T^{2} \)
97 \( 1 + 8.47T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.310636520298814104968946354328, −7.62214456678762961095831972245, −6.58158715099616535878397542704, −5.95912243412198332862939200649, −5.64181583575188349998027152782, −4.13226813634703388643001432307, −3.62365314171810583063380223557, −2.57630195079804006875441651275, −1.53933414510189078224232579073, 0, 1.53933414510189078224232579073, 2.57630195079804006875441651275, 3.62365314171810583063380223557, 4.13226813634703388643001432307, 5.64181583575188349998027152782, 5.95912243412198332862939200649, 6.58158715099616535878397542704, 7.62214456678762961095831972245, 8.310636520298814104968946354328

Graph of the $Z$-function along the critical line