L(s) = 1 | − 2-s + 4-s + 7-s − 8-s + 4.89·11-s − 4.44·13-s − 14-s + 16-s + 2·17-s + 1.55·19-s − 4.89·22-s + 2.89·23-s + 4.44·26-s + 28-s − 6.89·29-s + 8.89·31-s − 32-s − 2·34-s − 2·37-s − 1.55·38-s + 1.10·41-s + 0.898·43-s + 4.89·44-s − 2.89·46-s + 8.89·47-s + 49-s − 4.44·52-s + ⋯ |
L(s) = 1 | − 0.707·2-s + 0.5·4-s + 0.377·7-s − 0.353·8-s + 1.47·11-s − 1.23·13-s − 0.267·14-s + 0.250·16-s + 0.485·17-s + 0.355·19-s − 1.04·22-s + 0.604·23-s + 0.872·26-s + 0.188·28-s − 1.28·29-s + 1.59·31-s − 0.176·32-s − 0.342·34-s − 0.328·37-s − 0.251·38-s + 0.171·41-s + 0.137·43-s + 0.738·44-s − 0.427·46-s + 1.29·47-s + 0.142·49-s − 0.617·52-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 3150 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 3150 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.480401684\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.480401684\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + T \) |
| 3 | \( 1 \) |
| 5 | \( 1 \) |
| 7 | \( 1 - T \) |
good | 11 | \( 1 - 4.89T + 11T^{2} \) |
| 13 | \( 1 + 4.44T + 13T^{2} \) |
| 17 | \( 1 - 2T + 17T^{2} \) |
| 19 | \( 1 - 1.55T + 19T^{2} \) |
| 23 | \( 1 - 2.89T + 23T^{2} \) |
| 29 | \( 1 + 6.89T + 29T^{2} \) |
| 31 | \( 1 - 8.89T + 31T^{2} \) |
| 37 | \( 1 + 2T + 37T^{2} \) |
| 41 | \( 1 - 1.10T + 41T^{2} \) |
| 43 | \( 1 - 0.898T + 43T^{2} \) |
| 47 | \( 1 - 8.89T + 47T^{2} \) |
| 53 | \( 1 + 10.8T + 53T^{2} \) |
| 59 | \( 1 - 1.55T + 59T^{2} \) |
| 61 | \( 1 - 3.55T + 61T^{2} \) |
| 67 | \( 1 - 8T + 67T^{2} \) |
| 71 | \( 1 - 1.10T + 71T^{2} \) |
| 73 | \( 1 + 2.89T + 73T^{2} \) |
| 79 | \( 1 - 6.89T + 79T^{2} \) |
| 83 | \( 1 + 2.44T + 83T^{2} \) |
| 89 | \( 1 - 10T + 89T^{2} \) |
| 97 | \( 1 + 15.7T + 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−8.748720080240834891533252527474, −7.945031765864917522280222777612, −7.25302146126156984086378209602, −6.65841241549936900798256318312, −5.73838245348089955810376592647, −4.85373147924713434409810021807, −3.93562728597974423781216070489, −2.91011075334615027338934830526, −1.85788147732680409848894070100, −0.847387495208084136665961882814,
0.847387495208084136665961882814, 1.85788147732680409848894070100, 2.91011075334615027338934830526, 3.93562728597974423781216070489, 4.85373147924713434409810021807, 5.73838245348089955810376592647, 6.65841241549936900798256318312, 7.25302146126156984086378209602, 7.945031765864917522280222777612, 8.748720080240834891533252527474