| L(s) = 1 | + (−0.866 − 0.5i)2-s + (−0.500 − 0.866i)4-s + (2.23 + 0.133i)5-s + (2.59 + 0.5i)7-s + 3i·8-s + (−1.86 − 1.23i)10-s + 2i·13-s + (−2 − 1.73i)14-s + (0.500 − 0.866i)16-s + (1.73 − i)17-s + (3 − 5.19i)19-s + (−1.00 − 1.99i)20-s + (−2.59 − 1.5i)23-s + (4.96 + 0.598i)25-s + (1 − 1.73i)26-s + ⋯ |
| L(s) = 1 | + (−0.612 − 0.353i)2-s + (−0.250 − 0.433i)4-s + (0.998 + 0.0599i)5-s + (0.981 + 0.188i)7-s + 1.06i·8-s + (−0.590 − 0.389i)10-s + 0.554i·13-s + (−0.534 − 0.462i)14-s + (0.125 − 0.216i)16-s + (0.420 − 0.242i)17-s + (0.688 − 1.19i)19-s + (−0.223 − 0.447i)20-s + (−0.541 − 0.312i)23-s + (0.992 + 0.119i)25-s + (0.196 − 0.339i)26-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 315 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.758 + 0.652i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 315 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.758 + 0.652i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
| \(L(1)\) |
\(\approx\) |
\(1.07934 - 0.400302i\) |
| \(L(\frac12)\) |
\(\approx\) |
\(1.07934 - 0.400302i\) |
| \(L(\frac{3}{2})\) |
|
not available |
| \(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
|---|
| bad | 3 | \( 1 \) |
| 5 | \( 1 + (-2.23 - 0.133i)T \) |
| 7 | \( 1 + (-2.59 - 0.5i)T \) |
| good | 2 | \( 1 + (0.866 + 0.5i)T + (1 + 1.73i)T^{2} \) |
| 11 | \( 1 + (-5.5 + 9.52i)T^{2} \) |
| 13 | \( 1 - 2iT - 13T^{2} \) |
| 17 | \( 1 + (-1.73 + i)T + (8.5 - 14.7i)T^{2} \) |
| 19 | \( 1 + (-3 + 5.19i)T + (-9.5 - 16.4i)T^{2} \) |
| 23 | \( 1 + (2.59 + 1.5i)T + (11.5 + 19.9i)T^{2} \) |
| 29 | \( 1 - 7T + 29T^{2} \) |
| 31 | \( 1 + (1 + 1.73i)T + (-15.5 + 26.8i)T^{2} \) |
| 37 | \( 1 + (6.92 + 4i)T + (18.5 + 32.0i)T^{2} \) |
| 41 | \( 1 + 5T + 41T^{2} \) |
| 43 | \( 1 - 7iT - 43T^{2} \) |
| 47 | \( 1 + (23.5 + 40.7i)T^{2} \) |
| 53 | \( 1 + (5.19 - 3i)T + (26.5 - 45.8i)T^{2} \) |
| 59 | \( 1 + (5 + 8.66i)T + (-29.5 + 51.0i)T^{2} \) |
| 61 | \( 1 + (3.5 - 6.06i)T + (-30.5 - 52.8i)T^{2} \) |
| 67 | \( 1 + (-4.33 + 2.5i)T + (33.5 - 58.0i)T^{2} \) |
| 71 | \( 1 - 2T + 71T^{2} \) |
| 73 | \( 1 + (5.19 - 3i)T + (36.5 - 63.2i)T^{2} \) |
| 79 | \( 1 + (1 - 1.73i)T + (-39.5 - 68.4i)T^{2} \) |
| 83 | \( 1 - 11iT - 83T^{2} \) |
| 89 | \( 1 + (4.5 - 7.79i)T + (-44.5 - 77.0i)T^{2} \) |
| 97 | \( 1 - 16iT - 97T^{2} \) |
| show more | |
| show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−11.29439533609571104838711051467, −10.55996158703446973952465231268, −9.635883263673471045990917869201, −8.987107171476530975261749631874, −8.040019877867038931166147554489, −6.65379077633378833328611523862, −5.44474803353433179002083624620, −4.72330931477009304620142931760, −2.53247835130626565846260934077, −1.35675966927314170876715232013,
1.48958335002481655634818506321, 3.36792355653108365370266870112, 4.83917553324183279065437108278, 5.91030439690509573297726387943, 7.16740253502427371740506492359, 8.109634480815861904650392522973, 8.752599937515953523157801205463, 9.976898840984173998864587690302, 10.38917643622884758791187504131, 11.88560330338452182633165092058