L(s) = 1 | + 16·4-s − 25·5-s + 49·7-s + 73·11-s + 23·13-s + 256·16-s − 263·17-s − 400·20-s + 625·25-s + 784·28-s + 1.15e3·29-s − 1.22e3·35-s + 1.16e3·44-s + 3.45e3·47-s + 2.40e3·49-s + 368·52-s − 1.82e3·55-s + 4.09e3·64-s − 575·65-s − 4.20e3·68-s + 1.00e4·71-s − 9.50e3·73-s + 3.57e3·77-s + 1.21e4·79-s − 6.40e3·80-s + 6.38e3·83-s + 6.57e3·85-s + ⋯ |
L(s) = 1 | + 4-s − 5-s + 7-s + 0.603·11-s + 0.136·13-s + 16-s − 0.910·17-s − 20-s + 25-s + 28-s + 1.37·29-s − 35-s + 0.603·44-s + 1.56·47-s + 49-s + 0.136·52-s − 0.603·55-s + 64-s − 0.136·65-s − 0.910·68-s + 1.99·71-s − 1.78·73-s + 0.603·77-s + 1.94·79-s − 80-s + 0.926·83-s + 0.910·85-s + ⋯ |
Λ(s)=(=(315s/2ΓC(s)L(s)Λ(5−s)
Λ(s)=(=(315s/2ΓC(s+2)L(s)Λ(1−s)
Degree: |
2 |
Conductor: |
315
= 32⋅5⋅7
|
Sign: |
1
|
Analytic conductor: |
32.5615 |
Root analytic conductor: |
5.70627 |
Motivic weight: |
4 |
Rational: |
yes |
Arithmetic: |
yes |
Character: |
χ315(244,⋅)
|
Primitive: |
yes
|
Self-dual: |
yes
|
Analytic rank: |
0
|
Selberg data: |
(2, 315, ( :2), 1)
|
Particular Values
L(25) |
≈ |
2.529293729 |
L(21) |
≈ |
2.529293729 |
L(3) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 3 | 1 |
| 5 | 1+p2T |
| 7 | 1−p2T |
good | 2 | (1−p2T)(1+p2T) |
| 11 | 1−73T+p4T2 |
| 13 | 1−23T+p4T2 |
| 17 | 1+263T+p4T2 |
| 19 | (1−p2T)(1+p2T) |
| 23 | (1−p2T)(1+p2T) |
| 29 | 1−1153T+p4T2 |
| 31 | (1−p2T)(1+p2T) |
| 37 | (1−p2T)(1+p2T) |
| 41 | (1−p2T)(1+p2T) |
| 43 | (1−p2T)(1+p2T) |
| 47 | 1−3457T+p4T2 |
| 53 | (1−p2T)(1+p2T) |
| 59 | (1−p2T)(1+p2T) |
| 61 | (1−p2T)(1+p2T) |
| 67 | (1−p2T)(1+p2T) |
| 71 | 1−10078T+p4T2 |
| 73 | 1+9502T+p4T2 |
| 79 | 1−12167T+p4T2 |
| 83 | 1−6382T+p4T2 |
| 89 | (1−p2T)(1+p2T) |
| 97 | 1−3383T+p4T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−11.14169827501417819453778426814, −10.46862084264821887576153723480, −8.904788044812155669810465425491, −8.063583656677963155937712525887, −7.21254494712299882301260948405, −6.32109073254335625819948973452, −4.87494519743366996133717786272, −3.80023292654454020295098033991, −2.39948374559678777967862535598, −1.02430201843410146653340870684,
1.02430201843410146653340870684, 2.39948374559678777967862535598, 3.80023292654454020295098033991, 4.87494519743366996133717786272, 6.32109073254335625819948973452, 7.21254494712299882301260948405, 8.063583656677963155937712525887, 8.904788044812155669810465425491, 10.46862084264821887576153723480, 11.14169827501417819453778426814