L(s) = 1 | + (2.02 − 0.543i)2-s + (2.08 − 1.20i)4-s + (−0.530 + 2.17i)5-s + (2.41 − 1.07i)7-s + (0.609 − 0.609i)8-s + (0.105 + 4.69i)10-s + (4.56 − 2.63i)11-s + (−3.08 − 3.08i)13-s + (4.31 − 3.50i)14-s + (−1.50 + 2.60i)16-s + (−1.58 + 5.92i)17-s + (−0.715 − 0.413i)19-s + (1.51 + 5.17i)20-s + (7.82 − 7.82i)22-s + (−0.359 − 1.33i)23-s + ⋯ |
L(s) = 1 | + (1.43 − 0.384i)2-s + (1.04 − 0.602i)4-s + (−0.237 + 0.971i)5-s + (0.913 − 0.407i)7-s + (0.215 − 0.215i)8-s + (0.0332 + 1.48i)10-s + (1.37 − 0.794i)11-s + (−0.855 − 0.855i)13-s + (1.15 − 0.936i)14-s + (−0.376 + 0.651i)16-s + (−0.385 + 1.43i)17-s + (−0.164 − 0.0948i)19-s + (0.337 + 1.15i)20-s + (1.66 − 1.66i)22-s + (−0.0748 − 0.279i)23-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 315 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.976 + 0.215i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 315 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.976 + 0.215i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(2.70252 - 0.295182i\) |
\(L(\frac12)\) |
\(\approx\) |
\(2.70252 - 0.295182i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 \) |
| 5 | \( 1 + (0.530 - 2.17i)T \) |
| 7 | \( 1 + (-2.41 + 1.07i)T \) |
good | 2 | \( 1 + (-2.02 + 0.543i)T + (1.73 - i)T^{2} \) |
| 11 | \( 1 + (-4.56 + 2.63i)T + (5.5 - 9.52i)T^{2} \) |
| 13 | \( 1 + (3.08 + 3.08i)T + 13iT^{2} \) |
| 17 | \( 1 + (1.58 - 5.92i)T + (-14.7 - 8.5i)T^{2} \) |
| 19 | \( 1 + (0.715 + 0.413i)T + (9.5 + 16.4i)T^{2} \) |
| 23 | \( 1 + (0.359 + 1.33i)T + (-19.9 + 11.5i)T^{2} \) |
| 29 | \( 1 + 7.45T + 29T^{2} \) |
| 31 | \( 1 + (2.97 + 5.15i)T + (-15.5 + 26.8i)T^{2} \) |
| 37 | \( 1 + (0.568 + 2.12i)T + (-32.0 + 18.5i)T^{2} \) |
| 41 | \( 1 - 2.00iT - 41T^{2} \) |
| 43 | \( 1 + (1.73 + 1.73i)T + 43iT^{2} \) |
| 47 | \( 1 + (4.17 - 1.11i)T + (40.7 - 23.5i)T^{2} \) |
| 53 | \( 1 + (-6.65 - 1.78i)T + (45.8 + 26.5i)T^{2} \) |
| 59 | \( 1 + (-4.07 - 7.06i)T + (-29.5 + 51.0i)T^{2} \) |
| 61 | \( 1 + (-1.12 + 1.94i)T + (-30.5 - 52.8i)T^{2} \) |
| 67 | \( 1 + (-4.67 - 1.25i)T + (58.0 + 33.5i)T^{2} \) |
| 71 | \( 1 + 9.40iT - 71T^{2} \) |
| 73 | \( 1 + (2.80 - 10.4i)T + (-63.2 - 36.5i)T^{2} \) |
| 79 | \( 1 + (-7.72 - 4.46i)T + (39.5 + 68.4i)T^{2} \) |
| 83 | \( 1 + (2.36 - 2.36i)T - 83iT^{2} \) |
| 89 | \( 1 + (-4.69 + 8.13i)T + (-44.5 - 77.0i)T^{2} \) |
| 97 | \( 1 + (-5.63 + 5.63i)T - 97iT^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−11.53453417283482039893038654857, −11.15028639619375670311363309304, −10.25891307905600896833742273147, −8.701169081801625817864742579826, −7.57580714096824369577213068439, −6.43216239312135039360168086667, −5.56816043485964726462170012948, −4.18389373610794297063821381604, −3.55958197883868474372353285563, −2.10420417983479401025210734696,
1.95863721750920251611037641404, 3.87443511087448011720975189159, 4.75131085505416914891437153606, 5.28141529107532542911969525686, 6.71741321039394054771787322891, 7.50095075727738489502295879939, 8.989861276449559655539519722924, 9.506972643628470318395364954832, 11.58461025083228006889023419522, 11.78185349966316742525362395068