L(s) = 1 | − 18·2-s + 196·4-s + 125·5-s + 343·7-s − 1.22e3·8-s − 2.25e3·10-s + 8.01e3·11-s − 1.78e3·13-s − 6.17e3·14-s − 3.05e3·16-s − 8.35e3·17-s − 5.88e3·19-s + 2.45e4·20-s − 1.44e5·22-s + 7.77e4·23-s + 1.56e4·25-s + 3.21e4·26-s + 6.72e4·28-s − 1.55e5·29-s − 3.10e5·31-s + 2.11e5·32-s + 1.50e5·34-s + 4.28e4·35-s − 4.33e5·37-s + 1.05e5·38-s − 1.53e5·40-s − 3.57e5·41-s + ⋯ |
L(s) = 1 | − 1.59·2-s + 1.53·4-s + 0.447·5-s + 0.377·7-s − 0.845·8-s − 0.711·10-s + 1.81·11-s − 0.225·13-s − 0.601·14-s − 0.186·16-s − 0.412·17-s − 0.196·19-s + 0.684·20-s − 2.88·22-s + 1.33·23-s + 1/5·25-s + 0.358·26-s + 0.578·28-s − 1.18·29-s − 1.86·31-s + 1.14·32-s + 0.656·34-s + 0.169·35-s − 1.40·37-s + 0.313·38-s − 0.377·40-s − 0.811·41-s + ⋯ |
Λ(s)=(=(315s/2ΓC(s)L(s)−Λ(8−s)
Λ(s)=(=(315s/2ΓC(s+7/2)L(s)−Λ(1−s)
Particular Values
L(4) |
= |
0 |
L(21) |
= |
0 |
L(29) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 3 | 1 |
| 5 | 1−p3T |
| 7 | 1−p3T |
good | 2 | 1+9pT+p7T2 |
| 11 | 1−8016T+p7T2 |
| 13 | 1+1786T+p7T2 |
| 17 | 1+8358T+p7T2 |
| 19 | 1+5884T+p7T2 |
| 23 | 1−77700T+p7T2 |
| 29 | 1+155742T+p7T2 |
| 31 | 1+10000pT+p7T2 |
| 37 | 1+433618T+p7T2 |
| 41 | 1+357942T+p7T2 |
| 43 | 1+724492T+p7T2 |
| 47 | 1+175320T+p7T2 |
| 53 | 1+132198T+p7T2 |
| 59 | 1+44892pT+p7T2 |
| 61 | 1−835478T+p7T2 |
| 67 | 1−3486308T+p7T2 |
| 71 | 1−2872260T+p7T2 |
| 73 | 1−5951882T+p7T2 |
| 79 | 1+1680904T+p7T2 |
| 83 | 1+3577524T+p7T2 |
| 89 | 1−6254826T+p7T2 |
| 97 | 1+5257054T+p7T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−9.617048099366130674806335954011, −9.151661369503961962117148145250, −8.405675446409159131043949560336, −7.13188360919454764319842406104, −6.61636499852554801866918111058, −5.13646523835169714366678375839, −3.64173694804000630406893618966, −1.94298647854702915529021799917, −1.33202535904229649704791322438, 0,
1.33202535904229649704791322438, 1.94298647854702915529021799917, 3.64173694804000630406893618966, 5.13646523835169714366678375839, 6.61636499852554801866918111058, 7.13188360919454764319842406104, 8.405675446409159131043949560336, 9.151661369503961962117148145250, 9.617048099366130674806335954011