Properties

Label 2-315-1.1-c7-0-59
Degree $2$
Conductor $315$
Sign $-1$
Analytic cond. $98.4012$
Root an. cond. $9.91974$
Motivic weight $7$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 18·2-s + 196·4-s + 125·5-s + 343·7-s − 1.22e3·8-s − 2.25e3·10-s + 8.01e3·11-s − 1.78e3·13-s − 6.17e3·14-s − 3.05e3·16-s − 8.35e3·17-s − 5.88e3·19-s + 2.45e4·20-s − 1.44e5·22-s + 7.77e4·23-s + 1.56e4·25-s + 3.21e4·26-s + 6.72e4·28-s − 1.55e5·29-s − 3.10e5·31-s + 2.11e5·32-s + 1.50e5·34-s + 4.28e4·35-s − 4.33e5·37-s + 1.05e5·38-s − 1.53e5·40-s − 3.57e5·41-s + ⋯
L(s)  = 1  − 1.59·2-s + 1.53·4-s + 0.447·5-s + 0.377·7-s − 0.845·8-s − 0.711·10-s + 1.81·11-s − 0.225·13-s − 0.601·14-s − 0.186·16-s − 0.412·17-s − 0.196·19-s + 0.684·20-s − 2.88·22-s + 1.33·23-s + 1/5·25-s + 0.358·26-s + 0.578·28-s − 1.18·29-s − 1.86·31-s + 1.14·32-s + 0.656·34-s + 0.169·35-s − 1.40·37-s + 0.313·38-s − 0.377·40-s − 0.811·41-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 315 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(8-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 315 ^{s/2} \, \Gamma_{\C}(s+7/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(315\)    =    \(3^{2} \cdot 5 \cdot 7\)
Sign: $-1$
Analytic conductor: \(98.4012\)
Root analytic conductor: \(9.91974\)
Motivic weight: \(7\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 315,\ (\ :7/2),\ -1)\)

Particular Values

\(L(4)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{9}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 \)
5 \( 1 - p^{3} T \)
7 \( 1 - p^{3} T \)
good2 \( 1 + 9 p T + p^{7} T^{2} \)
11 \( 1 - 8016 T + p^{7} T^{2} \)
13 \( 1 + 1786 T + p^{7} T^{2} \)
17 \( 1 + 8358 T + p^{7} T^{2} \)
19 \( 1 + 5884 T + p^{7} T^{2} \)
23 \( 1 - 77700 T + p^{7} T^{2} \)
29 \( 1 + 155742 T + p^{7} T^{2} \)
31 \( 1 + 10000 p T + p^{7} T^{2} \)
37 \( 1 + 433618 T + p^{7} T^{2} \)
41 \( 1 + 357942 T + p^{7} T^{2} \)
43 \( 1 + 724492 T + p^{7} T^{2} \)
47 \( 1 + 175320 T + p^{7} T^{2} \)
53 \( 1 + 132198 T + p^{7} T^{2} \)
59 \( 1 + 44892 p T + p^{7} T^{2} \)
61 \( 1 - 835478 T + p^{7} T^{2} \)
67 \( 1 - 3486308 T + p^{7} T^{2} \)
71 \( 1 - 2872260 T + p^{7} T^{2} \)
73 \( 1 - 5951882 T + p^{7} T^{2} \)
79 \( 1 + 1680904 T + p^{7} T^{2} \)
83 \( 1 + 3577524 T + p^{7} T^{2} \)
89 \( 1 - 6254826 T + p^{7} T^{2} \)
97 \( 1 + 5257054 T + p^{7} T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.617048099366130674806335954011, −9.151661369503961962117148145250, −8.405675446409159131043949560336, −7.13188360919454764319842406104, −6.61636499852554801866918111058, −5.13646523835169714366678375839, −3.64173694804000630406893618966, −1.94298647854702915529021799917, −1.33202535904229649704791322438, 0, 1.33202535904229649704791322438, 1.94298647854702915529021799917, 3.64173694804000630406893618966, 5.13646523835169714366678375839, 6.61636499852554801866918111058, 7.13188360919454764319842406104, 8.405675446409159131043949560336, 9.151661369503961962117148145250, 9.617048099366130674806335954011

Graph of the $Z$-function along the critical line