L(s) = 1 | + 2·2-s − 124·4-s + 125·5-s + 343·7-s − 504·8-s + 250·10-s − 2.72e3·11-s + 2.87e3·13-s + 686·14-s + 1.48e4·16-s − 9.27e3·17-s − 4.30e3·19-s − 1.55e4·20-s − 5.44e3·22-s + 4.15e4·23-s + 1.56e4·25-s + 5.74e3·26-s − 4.25e4·28-s + 3.54e4·29-s − 5.29e4·31-s + 9.42e4·32-s − 1.85e4·34-s + 4.28e4·35-s − 8.40e4·37-s − 8.60e3·38-s − 6.30e4·40-s − 1.80e5·41-s + ⋯ |
L(s) = 1 | + 0.176·2-s − 0.968·4-s + 0.447·5-s + 0.377·7-s − 0.348·8-s + 0.0790·10-s − 0.617·11-s + 0.362·13-s + 0.0668·14-s + 0.907·16-s − 0.458·17-s − 0.143·19-s − 0.433·20-s − 0.109·22-s + 0.711·23-s + 1/5·25-s + 0.0641·26-s − 0.366·28-s + 0.270·29-s − 0.319·31-s + 0.508·32-s − 0.0809·34-s + 0.169·35-s − 0.272·37-s − 0.0254·38-s − 0.155·40-s − 0.408·41-s + ⋯ |
Λ(s)=(=(315s/2ΓC(s)L(s)−Λ(8−s)
Λ(s)=(=(315s/2ΓC(s+7/2)L(s)−Λ(1−s)
Particular Values
L(4) |
= |
0 |
L(21) |
= |
0 |
L(29) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 3 | 1 |
| 5 | 1−p3T |
| 7 | 1−p3T |
good | 2 | 1−pT+p7T2 |
| 11 | 1+2724T+p7T2 |
| 13 | 1−2874T+p7T2 |
| 17 | 1+9278T+p7T2 |
| 19 | 1+4304T+p7T2 |
| 23 | 1−41500T+p7T2 |
| 29 | 1−35498T+p7T2 |
| 31 | 1+52940T+p7T2 |
| 37 | 1+84098T+p7T2 |
| 41 | 1+180342T+p7T2 |
| 43 | 1+33452T+p7T2 |
| 47 | 1−136120T+p7T2 |
| 53 | 1−23974pT+p7T2 |
| 59 | 1−1553252T+p7T2 |
| 61 | 1−213598T+p7T2 |
| 67 | 1−487228T+p7T2 |
| 71 | 1+1086000T+p7T2 |
| 73 | 1+5921978T+p7T2 |
| 79 | 1+5429824T+p7T2 |
| 83 | 1+6933404T+p7T2 |
| 89 | 1+262614T+p7T2 |
| 97 | 1+522234T+p7T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−9.978714357961983819834016362634, −8.941675942387986477726587270182, −8.324389533298515320035954047280, −7.08617885469246626824000488682, −5.78613140817393934315282691278, −5.01104748816947260210337486803, −4.00425285494690616056593847642, −2.71048883429078753857118637643, −1.28177727953048994887417205121, 0,
1.28177727953048994887417205121, 2.71048883429078753857118637643, 4.00425285494690616056593847642, 5.01104748816947260210337486803, 5.78613140817393934315282691278, 7.08617885469246626824000488682, 8.324389533298515320035954047280, 8.941675942387986477726587270182, 9.978714357961983819834016362634