Properties

Label 2-3120-5.4-c1-0-62
Degree $2$
Conductor $3120$
Sign $-0.590 + 0.807i$
Analytic cond. $24.9133$
Root an. cond. $4.99132$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  i·3-s + (1.32 − 1.80i)5-s − 9-s + 4.64·11-s + i·13-s + (−1.80 − 1.32i)15-s − 4.24i·17-s − 6.24·19-s − 2.24i·23-s + (−1.51 − 4.76i)25-s + i·27-s + 9.21·29-s − 9.28·31-s − 4.64i·33-s − 7.28i·37-s + ⋯
L(s)  = 1  − 0.577i·3-s + (0.590 − 0.807i)5-s − 0.333·9-s + 1.39·11-s + 0.277i·13-s + (−0.466 − 0.340i)15-s − 1.03i·17-s − 1.43·19-s − 0.469i·23-s + (−0.303 − 0.952i)25-s + 0.192i·27-s + 1.71·29-s − 1.66·31-s − 0.807i·33-s − 1.19i·37-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 3120 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.590 + 0.807i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 3120 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.590 + 0.807i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(3120\)    =    \(2^{4} \cdot 3 \cdot 5 \cdot 13\)
Sign: $-0.590 + 0.807i$
Analytic conductor: \(24.9133\)
Root analytic conductor: \(4.99132\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{3120} (1249, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 3120,\ (\ :1/2),\ -0.590 + 0.807i)\)

Particular Values

\(L(1)\) \(\approx\) \(1.857768504\)
\(L(\frac12)\) \(\approx\) \(1.857768504\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 + iT \)
5 \( 1 + (-1.32 + 1.80i)T \)
13 \( 1 - iT \)
good7 \( 1 - 7T^{2} \)
11 \( 1 - 4.64T + 11T^{2} \)
17 \( 1 + 4.24iT - 17T^{2} \)
19 \( 1 + 6.24T + 19T^{2} \)
23 \( 1 + 2.24iT - 23T^{2} \)
29 \( 1 - 9.21T + 29T^{2} \)
31 \( 1 + 9.28T + 31T^{2} \)
37 \( 1 + 7.28iT - 37T^{2} \)
41 \( 1 + 5.67T + 41T^{2} \)
43 \( 1 - 4.24iT - 43T^{2} \)
47 \( 1 - 2.88iT - 47T^{2} \)
53 \( 1 + 9.21iT - 53T^{2} \)
59 \( 1 - 5.92T + 59T^{2} \)
61 \( 1 - 0.969T + 61T^{2} \)
67 \( 1 + 1.93iT - 67T^{2} \)
71 \( 1 + 5.60T + 71T^{2} \)
73 \( 1 + 12.5iT - 73T^{2} \)
79 \( 1 - 12.2T + 79T^{2} \)
83 \( 1 - 3.67iT - 83T^{2} \)
89 \( 1 - 9.67T + 89T^{2} \)
97 \( 1 - 6iT - 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.702160125020813854334287325133, −7.69070463292639961085106219391, −6.66900087466562694618685242862, −6.41164177992001988049353779881, −5.38808955063404529118705020526, −4.58876805687438348338886408060, −3.77789327831133070368561813568, −2.43635022999084056155742735816, −1.65211422586707982345360402373, −0.57406262764946145722890282107, 1.45748957006103370277085726975, 2.45703590356028158849151447077, 3.56479881321858100176329149335, 4.07280584953882041810949398383, 5.16021904409751230792705615748, 6.10597419909817265755560644654, 6.51155025867433857082019268527, 7.31305966201475698158461744232, 8.511780823662353010529048227511, 8.866125595092648902266858081011

Graph of the $Z$-function along the critical line