L(s) = 1 | − i·3-s + (1.32 − 1.80i)5-s − 9-s + 4.64·11-s + i·13-s + (−1.80 − 1.32i)15-s − 4.24i·17-s − 6.24·19-s − 2.24i·23-s + (−1.51 − 4.76i)25-s + i·27-s + 9.21·29-s − 9.28·31-s − 4.64i·33-s − 7.28i·37-s + ⋯ |
L(s) = 1 | − 0.577i·3-s + (0.590 − 0.807i)5-s − 0.333·9-s + 1.39·11-s + 0.277i·13-s + (−0.466 − 0.340i)15-s − 1.03i·17-s − 1.43·19-s − 0.469i·23-s + (−0.303 − 0.952i)25-s + 0.192i·27-s + 1.71·29-s − 1.66·31-s − 0.807i·33-s − 1.19i·37-s + ⋯ |
Λ(s)=(=(3120s/2ΓC(s)L(s)(−0.590+0.807i)Λ(2−s)
Λ(s)=(=(3120s/2ΓC(s+1/2)L(s)(−0.590+0.807i)Λ(1−s)
Degree: |
2 |
Conductor: |
3120
= 24⋅3⋅5⋅13
|
Sign: |
−0.590+0.807i
|
Analytic conductor: |
24.9133 |
Root analytic conductor: |
4.99132 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ3120(1249,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 3120, ( :1/2), −0.590+0.807i)
|
Particular Values
L(1) |
≈ |
1.857768504 |
L(21) |
≈ |
1.857768504 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 3 | 1+iT |
| 5 | 1+(−1.32+1.80i)T |
| 13 | 1−iT |
good | 7 | 1−7T2 |
| 11 | 1−4.64T+11T2 |
| 17 | 1+4.24iT−17T2 |
| 19 | 1+6.24T+19T2 |
| 23 | 1+2.24iT−23T2 |
| 29 | 1−9.21T+29T2 |
| 31 | 1+9.28T+31T2 |
| 37 | 1+7.28iT−37T2 |
| 41 | 1+5.67T+41T2 |
| 43 | 1−4.24iT−43T2 |
| 47 | 1−2.88iT−47T2 |
| 53 | 1+9.21iT−53T2 |
| 59 | 1−5.92T+59T2 |
| 61 | 1−0.969T+61T2 |
| 67 | 1+1.93iT−67T2 |
| 71 | 1+5.60T+71T2 |
| 73 | 1+12.5iT−73T2 |
| 79 | 1−12.2T+79T2 |
| 83 | 1−3.67iT−83T2 |
| 89 | 1−9.67T+89T2 |
| 97 | 1−6iT−97T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−8.702160125020813854334287325133, −7.69070463292639961085106219391, −6.66900087466562694618685242862, −6.41164177992001988049353779881, −5.38808955063404529118705020526, −4.58876805687438348338886408060, −3.77789327831133070368561813568, −2.43635022999084056155742735816, −1.65211422586707982345360402373, −0.57406262764946145722890282107,
1.45748957006103370277085726975, 2.45703590356028158849151447077, 3.56479881321858100176329149335, 4.07280584953882041810949398383, 5.16021904409751230792705615748, 6.10597419909817265755560644654, 6.51155025867433857082019268527, 7.31305966201475698158461744232, 8.511780823662353010529048227511, 8.866125595092648902266858081011