L(s) = 1 | − i·3-s + (−1.75 − 1.38i)5-s − 9-s − 1.50·11-s + i·13-s + (−1.38 + 1.75i)15-s + 2.72i·17-s + 0.726·19-s + 4.72i·23-s + (1.14 + 4.86i)25-s + i·27-s + 7.55·29-s + 3.00·31-s + 1.50i·33-s + 5.00i·37-s + ⋯ |
L(s) = 1 | − 0.577i·3-s + (−0.783 − 0.621i)5-s − 0.333·9-s − 0.453·11-s + 0.277i·13-s + (−0.358 + 0.452i)15-s + 0.661i·17-s + 0.166·19-s + 0.985i·23-s + (0.228 + 0.973i)25-s + 0.192i·27-s + 1.40·29-s + 0.540·31-s + 0.261i·33-s + 0.823i·37-s + ⋯ |
Λ(s)=(=(3120s/2ΓC(s)L(s)(0.783+0.621i)Λ(2−s)
Λ(s)=(=(3120s/2ΓC(s+1/2)L(s)(0.783+0.621i)Λ(1−s)
Degree: |
2 |
Conductor: |
3120
= 24⋅3⋅5⋅13
|
Sign: |
0.783+0.621i
|
Analytic conductor: |
24.9133 |
Root analytic conductor: |
4.99132 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ3120(1249,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 3120, ( :1/2), 0.783+0.621i)
|
Particular Values
L(1) |
≈ |
1.369375433 |
L(21) |
≈ |
1.369375433 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 3 | 1+iT |
| 5 | 1+(1.75+1.38i)T |
| 13 | 1−iT |
good | 7 | 1−7T2 |
| 11 | 1+1.50T+11T2 |
| 17 | 1−2.72iT−17T2 |
| 19 | 1−0.726T+19T2 |
| 23 | 1−4.72iT−23T2 |
| 29 | 1−7.55T+29T2 |
| 31 | 1−3.00T+31T2 |
| 37 | 1−5.00iT−37T2 |
| 41 | 1−5.78T+41T2 |
| 43 | 1+2.72iT−43T2 |
| 47 | 1+10.2iT−47T2 |
| 53 | 1+7.55iT−53T2 |
| 59 | 1+12.5T+59T2 |
| 61 | 1−6.28T+61T2 |
| 67 | 1+12.5iT−67T2 |
| 71 | 1+4.77T+71T2 |
| 73 | 1−12.0iT−73T2 |
| 79 | 1−5.27T+79T2 |
| 83 | 1+7.78iT−83T2 |
| 89 | 1+1.78T+89T2 |
| 97 | 1−6iT−97T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−8.421302608766991071759371647430, −7.955173554820651309057013525535, −7.21233845404225744217441788930, −6.44936986249266500869688333585, −5.52062340413919473029141197597, −4.77699109396742859052047280204, −3.88912970204085948270739178323, −2.99047286123964886112421061733, −1.79708542088910533601733190947, −0.71317089395745856639903613525,
0.69706277352882374359123859339, 2.61763409108892445073203585862, 3.02697237492869481377911624690, 4.22658777644963277224711219020, 4.66238542577320898374108318458, 5.74867537595910101144280752122, 6.51805259157415515274548803139, 7.40000020896567877945642469242, 7.977617394882667166333712971625, 8.742315897698293989163884126062