L(s) = 1 | − i·3-s + (0.432 + 2.19i)5-s − 9-s + 2.86·11-s + i·13-s + (2.19 − 0.432i)15-s + 5.52i·17-s + 3.52·19-s + 7.52i·23-s + (−4.62 + 1.89i)25-s + i·27-s − 6.77·29-s − 5.72·31-s − 2.86i·33-s − 3.72i·37-s + ⋯ |
L(s) = 1 | − 0.577i·3-s + (0.193 + 0.981i)5-s − 0.333·9-s + 0.863·11-s + 0.277i·13-s + (0.566 − 0.111i)15-s + 1.33i·17-s + 0.808·19-s + 1.56i·23-s + (−0.925 + 0.379i)25-s + 0.192i·27-s − 1.25·29-s − 1.02·31-s − 0.498i·33-s − 0.613i·37-s + ⋯ |
Λ(s)=(=(3120s/2ΓC(s)L(s)(−0.193−0.981i)Λ(2−s)
Λ(s)=(=(3120s/2ΓC(s+1/2)L(s)(−0.193−0.981i)Λ(1−s)
Degree: |
2 |
Conductor: |
3120
= 24⋅3⋅5⋅13
|
Sign: |
−0.193−0.981i
|
Analytic conductor: |
24.9133 |
Root analytic conductor: |
4.99132 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ3120(1249,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 3120, ( :1/2), −0.193−0.981i)
|
Particular Values
L(1) |
≈ |
1.421925546 |
L(21) |
≈ |
1.421925546 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 3 | 1+iT |
| 5 | 1+(−0.432−2.19i)T |
| 13 | 1−iT |
good | 7 | 1−7T2 |
| 11 | 1−2.86T+11T2 |
| 17 | 1−5.52iT−17T2 |
| 19 | 1−3.52T+19T2 |
| 23 | 1−7.52iT−23T2 |
| 29 | 1+6.77T+29T2 |
| 31 | 1+5.72T+31T2 |
| 37 | 1+3.72iT−37T2 |
| 41 | 1+10.1T+41T2 |
| 43 | 1+5.52iT−43T2 |
| 47 | 1+8.65iT−47T2 |
| 53 | 1−6.77iT−53T2 |
| 59 | 1−0.593T+59T2 |
| 61 | 1+5.25T+61T2 |
| 67 | 1−10.5iT−67T2 |
| 71 | 1−2.38T+71T2 |
| 73 | 1+5.45iT−73T2 |
| 79 | 1−2.47T+79T2 |
| 83 | 1−8.11iT−83T2 |
| 89 | 1−14.1T+89T2 |
| 97 | 1−6iT−97T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−9.002442362749210980285217041599, −7.974736553810754390217886047870, −7.24682617983848337553944760922, −6.82781925388679212569334095157, −5.87283293147336683891715076947, −5.42747770206425852654020393481, −3.77085828579888510112810546576, −3.55415593881964060690529633781, −2.14746807883972408889166258360, −1.47437469455835327633122598897,
0.43442245076966229069987308226, 1.64811885978877486401605361282, 2.90570967842718281498014123252, 3.84284258198109916668165331117, 4.71502003912366397323264245244, 5.22611423518205722776456488711, 6.08326113847345923609149590202, 6.98023794501156461579400304303, 7.86385346803128622375795995910, 8.653960438816911146143198554705