Properties

Label 2-3120-5.4-c1-0-16
Degree $2$
Conductor $3120$
Sign $-0.193 - 0.981i$
Analytic cond. $24.9133$
Root an. cond. $4.99132$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  i·3-s + (0.432 + 2.19i)5-s − 9-s + 2.86·11-s + i·13-s + (2.19 − 0.432i)15-s + 5.52i·17-s + 3.52·19-s + 7.52i·23-s + (−4.62 + 1.89i)25-s + i·27-s − 6.77·29-s − 5.72·31-s − 2.86i·33-s − 3.72i·37-s + ⋯
L(s)  = 1  − 0.577i·3-s + (0.193 + 0.981i)5-s − 0.333·9-s + 0.863·11-s + 0.277i·13-s + (0.566 − 0.111i)15-s + 1.33i·17-s + 0.808·19-s + 1.56i·23-s + (−0.925 + 0.379i)25-s + 0.192i·27-s − 1.25·29-s − 1.02·31-s − 0.498i·33-s − 0.613i·37-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 3120 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.193 - 0.981i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 3120 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.193 - 0.981i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(3120\)    =    \(2^{4} \cdot 3 \cdot 5 \cdot 13\)
Sign: $-0.193 - 0.981i$
Analytic conductor: \(24.9133\)
Root analytic conductor: \(4.99132\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{3120} (1249, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 3120,\ (\ :1/2),\ -0.193 - 0.981i)\)

Particular Values

\(L(1)\) \(\approx\) \(1.421925546\)
\(L(\frac12)\) \(\approx\) \(1.421925546\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 + iT \)
5 \( 1 + (-0.432 - 2.19i)T \)
13 \( 1 - iT \)
good7 \( 1 - 7T^{2} \)
11 \( 1 - 2.86T + 11T^{2} \)
17 \( 1 - 5.52iT - 17T^{2} \)
19 \( 1 - 3.52T + 19T^{2} \)
23 \( 1 - 7.52iT - 23T^{2} \)
29 \( 1 + 6.77T + 29T^{2} \)
31 \( 1 + 5.72T + 31T^{2} \)
37 \( 1 + 3.72iT - 37T^{2} \)
41 \( 1 + 10.1T + 41T^{2} \)
43 \( 1 + 5.52iT - 43T^{2} \)
47 \( 1 + 8.65iT - 47T^{2} \)
53 \( 1 - 6.77iT - 53T^{2} \)
59 \( 1 - 0.593T + 59T^{2} \)
61 \( 1 + 5.25T + 61T^{2} \)
67 \( 1 - 10.5iT - 67T^{2} \)
71 \( 1 - 2.38T + 71T^{2} \)
73 \( 1 + 5.45iT - 73T^{2} \)
79 \( 1 - 2.47T + 79T^{2} \)
83 \( 1 - 8.11iT - 83T^{2} \)
89 \( 1 - 14.1T + 89T^{2} \)
97 \( 1 - 6iT - 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.002442362749210980285217041599, −7.974736553810754390217886047870, −7.24682617983848337553944760922, −6.82781925388679212569334095157, −5.87283293147336683891715076947, −5.42747770206425852654020393481, −3.77085828579888510112810546576, −3.55415593881964060690529633781, −2.14746807883972408889166258360, −1.47437469455835327633122598897, 0.43442245076966229069987308226, 1.64811885978877486401605361282, 2.90570967842718281498014123252, 3.84284258198109916668165331117, 4.71502003912366397323264245244, 5.22611423518205722776456488711, 6.08326113847345923609149590202, 6.98023794501156461579400304303, 7.86385346803128622375795995910, 8.653960438816911146143198554705

Graph of the $Z$-function along the critical line