| L(s) = 1 | + (−0.707 + 0.707i)2-s + 3-s − 1.00i·4-s + (0.707 + 0.707i)5-s + (−0.707 + 0.707i)6-s + (0.707 + 0.707i)8-s + 9-s − 1.00·10-s − 1.00i·12-s − i·13-s + (0.707 + 0.707i)15-s − 1.00·16-s + (−0.707 + 0.707i)18-s + (0.707 − 0.707i)20-s + (0.707 + 0.707i)24-s + 1.00i·25-s + ⋯ |
| L(s) = 1 | + (−0.707 + 0.707i)2-s + 3-s − 1.00i·4-s + (0.707 + 0.707i)5-s + (−0.707 + 0.707i)6-s + (0.707 + 0.707i)8-s + 9-s − 1.00·10-s − 1.00i·12-s − i·13-s + (0.707 + 0.707i)15-s − 1.00·16-s + (−0.707 + 0.707i)18-s + (0.707 − 0.707i)20-s + (0.707 + 0.707i)24-s + 1.00i·25-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 3120 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.584 - 0.811i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 3120 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.584 - 0.811i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
| \(L(\frac{1}{2})\) |
\(\approx\) |
\(1.476998787\) |
| \(L(\frac12)\) |
\(\approx\) |
\(1.476998787\) |
| \(L(1)\) |
|
not available |
| \(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
|---|
| bad | 2 | \( 1 + (0.707 - 0.707i)T \) |
| 3 | \( 1 - T \) |
| 5 | \( 1 + (-0.707 - 0.707i)T \) |
| 13 | \( 1 + iT \) |
| good | 7 | \( 1 - iT^{2} \) |
| 11 | \( 1 - iT^{2} \) |
| 17 | \( 1 - iT^{2} \) |
| 19 | \( 1 + iT^{2} \) |
| 23 | \( 1 + iT^{2} \) |
| 29 | \( 1 - iT^{2} \) |
| 31 | \( 1 + T^{2} \) |
| 37 | \( 1 + T^{2} \) |
| 41 | \( 1 - 1.41iT - T^{2} \) |
| 43 | \( 1 - T^{2} \) |
| 47 | \( 1 + (-1.41 + 1.41i)T - iT^{2} \) |
| 53 | \( 1 - T^{2} \) |
| 59 | \( 1 + iT^{2} \) |
| 61 | \( 1 + (-1 + i)T - iT^{2} \) |
| 67 | \( 1 + T^{2} \) |
| 71 | \( 1 + 1.41T + T^{2} \) |
| 73 | \( 1 - iT^{2} \) |
| 79 | \( 1 + 2T + T^{2} \) |
| 83 | \( 1 + 1.41T + T^{2} \) |
| 89 | \( 1 + 1.41T + T^{2} \) |
| 97 | \( 1 - iT^{2} \) |
| show more | |
| show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−8.848762283689281379140287573330, −8.296265458465612065796222174080, −7.47258355996885764974075670291, −7.00708991612071726924951765775, −6.10804975842620779362656997038, −5.43258732665059010565351648712, −4.37853535239591614502332316656, −3.16474178869308125783964334162, −2.39755452717361779660028597755, −1.34795475522225406276137081947,
1.25600012921165273930164869197, 2.06937465498595576206894228063, 2.82478146593026054884867817788, 3.99590486567525974815403965615, 4.48811448504231746295313883959, 5.70997482577961223543582404032, 6.87558911581368782349431216103, 7.41963251869884032694322871353, 8.449531309508227574716681082487, 8.800821627957791258336647577133