| L(s) = 1 | + (−0.707 − 0.707i)3-s + (0.707 − 0.707i)5-s − 7-s + 1.00i·9-s + (0.707 + 0.707i)11-s − 13-s − 1.00·15-s + (−0.707 − 0.707i)17-s + (0.707 + 0.707i)21-s + (0.707 − 0.707i)23-s − 1.00i·25-s + (0.707 − 0.707i)27-s − 1.41·29-s + (−1 − i)31-s − 1.00i·33-s + ⋯ |
| L(s) = 1 | + (−0.707 − 0.707i)3-s + (0.707 − 0.707i)5-s − 7-s + 1.00i·9-s + (0.707 + 0.707i)11-s − 13-s − 1.00·15-s + (−0.707 − 0.707i)17-s + (0.707 + 0.707i)21-s + (0.707 − 0.707i)23-s − 1.00i·25-s + (0.707 − 0.707i)27-s − 1.41·29-s + (−1 − i)31-s − 1.00i·33-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 3120 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.966 + 0.256i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 3120 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.966 + 0.256i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
| \(L(\frac{1}{2})\) |
\(\approx\) |
\(0.5115529550\) |
| \(L(\frac12)\) |
\(\approx\) |
\(0.5115529550\) |
| \(L(1)\) |
|
not available |
| \(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
|---|
| bad | 2 | \( 1 \) |
| 3 | \( 1 + (0.707 + 0.707i)T \) |
| 5 | \( 1 + (-0.707 + 0.707i)T \) |
| 13 | \( 1 + T \) |
| good | 7 | \( 1 + T + T^{2} \) |
| 11 | \( 1 + (-0.707 - 0.707i)T + iT^{2} \) |
| 17 | \( 1 + (0.707 + 0.707i)T + iT^{2} \) |
| 19 | \( 1 - iT^{2} \) |
| 23 | \( 1 + (-0.707 + 0.707i)T - iT^{2} \) |
| 29 | \( 1 + 1.41T + T^{2} \) |
| 31 | \( 1 + (1 + i)T + iT^{2} \) |
| 37 | \( 1 + T + T^{2} \) |
| 41 | \( 1 + (-0.707 + 0.707i)T - iT^{2} \) |
| 43 | \( 1 + (1 + i)T + iT^{2} \) |
| 47 | \( 1 + 1.41iT - T^{2} \) |
| 53 | \( 1 + (-0.707 - 0.707i)T + iT^{2} \) |
| 59 | \( 1 - iT^{2} \) |
| 61 | \( 1 + T + T^{2} \) |
| 67 | \( 1 - T^{2} \) |
| 71 | \( 1 + (0.707 - 0.707i)T - iT^{2} \) |
| 73 | \( 1 - T^{2} \) |
| 79 | \( 1 - iT - T^{2} \) |
| 83 | \( 1 - T^{2} \) |
| 89 | \( 1 + (-0.707 + 0.707i)T - iT^{2} \) |
| 97 | \( 1 - iT - T^{2} \) |
| show more | |
| show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−8.752644247581912086093117104842, −7.40458004294565349874252029802, −7.03728597173755476697821949029, −6.32697998576902313861606649800, −5.47892598912793289791540686145, −4.91514188348048934112656198724, −3.93607739897995806918283607364, −2.47986719254794958525886354967, −1.81520637487947104283643524059, −0.32081805722866647974168627071,
1.66858616700135375308837788054, 3.11590657312081258084827797003, 3.51719742917936278941038965879, 4.66325617406163545462772689480, 5.56583500737394454925315134791, 6.18173743995387610877059556166, 6.73644529695289951595421468610, 7.44313521277167156968755966782, 8.896025686616272180167671689902, 9.335716281562271813015238943746