L(s) = 1 | + (−1.62 + 2.31i)2-s − 3i·3-s + (−2.71 − 7.52i)4-s − 20.0·5-s + (6.94 + 4.87i)6-s + 33.1i·7-s + (21.8 + 5.93i)8-s − 9·9-s + (32.5 − 46.4i)10-s + 7.50·11-s + (−22.5 + 8.15i)12-s + (−29.7 + 36.2i)13-s + (−76.7 − 53.8i)14-s + 60.1i·15-s + (−49.2 + 40.9i)16-s + 88.2·17-s + ⋯ |
L(s) = 1 | + (−0.574 + 0.818i)2-s − 0.577i·3-s + (−0.339 − 0.940i)4-s − 1.79·5-s + (0.472 + 0.331i)6-s + 1.78i·7-s + (0.964 + 0.262i)8-s − 0.333·9-s + (1.03 − 1.46i)10-s + 0.205·11-s + (−0.543 + 0.196i)12-s + (−0.633 + 0.773i)13-s + (−1.46 − 1.02i)14-s + 1.03i·15-s + (−0.769 + 0.639i)16-s + 1.25·17-s + ⋯ |
Λ(s)=(=(312s/2ΓC(s)L(s)(0.580+0.814i)Λ(4−s)
Λ(s)=(=(312s/2ΓC(s+3/2)L(s)(0.580+0.814i)Λ(1−s)
Degree: |
2 |
Conductor: |
312
= 23⋅3⋅13
|
Sign: |
0.580+0.814i
|
Analytic conductor: |
18.4085 |
Root analytic conductor: |
4.29052 |
Motivic weight: |
3 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ312(181,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 312, ( :3/2), 0.580+0.814i)
|
Particular Values
L(2) |
≈ |
0.3061681829 |
L(21) |
≈ |
0.3061681829 |
L(25) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+(1.62−2.31i)T |
| 3 | 1+3iT |
| 13 | 1+(29.7−36.2i)T |
good | 5 | 1+20.0T+125T2 |
| 7 | 1−33.1iT−343T2 |
| 11 | 1−7.50T+1.33e3T2 |
| 17 | 1−88.2T+4.91e3T2 |
| 19 | 1+43.0T+6.85e3T2 |
| 23 | 1+192.T+1.21e4T2 |
| 29 | 1+133.iT−2.43e4T2 |
| 31 | 1+114.iT−2.97e4T2 |
| 37 | 1+59.6T+5.06e4T2 |
| 41 | 1+505.iT−6.89e4T2 |
| 43 | 1−142.iT−7.95e4T2 |
| 47 | 1−97.2iT−1.03e5T2 |
| 53 | 1+141.iT−1.48e5T2 |
| 59 | 1−794.T+2.05e5T2 |
| 61 | 1+124.iT−2.26e5T2 |
| 67 | 1−174.T+3.00e5T2 |
| 71 | 1+519.iT−3.57e5T2 |
| 73 | 1−616.iT−3.89e5T2 |
| 79 | 1−937.T+4.93e5T2 |
| 83 | 1+1.14e3T+5.71e5T2 |
| 89 | 1+15.8iT−7.04e5T2 |
| 97 | 1−481.iT−9.12e5T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−11.41955932198992060415819452813, −9.885852090845465862997375413131, −8.810091560858840855663683832173, −8.145085704381023186366153719456, −7.48640637171887984391151094749, −6.35631574649420557245787892110, −5.35635971193052173852542274783, −4.00869392754295006160156270524, −2.17797659682752133883260165592, −0.19377890161410727837721888264,
0.871673197118746359271607380181, 3.31306934738544358187255432533, 3.88449788971339079094683441742, 4.73063234444842749042329282155, 7.08157595550907626811304158607, 7.80569403461171258238389131636, 8.376483940315759307022547620621, 9.964253457650350038394627941844, 10.39206071674242216222629301601, 11.25031747195643483468856702493