L(s) = 1 | + (−1.62 + 2.31i)2-s − 3i·3-s + (−2.71 − 7.52i)4-s − 20.0·5-s + (6.94 + 4.87i)6-s + 33.1i·7-s + (21.8 + 5.93i)8-s − 9·9-s + (32.5 − 46.4i)10-s + 7.50·11-s + (−22.5 + 8.15i)12-s + (−29.7 + 36.2i)13-s + (−76.7 − 53.8i)14-s + 60.1i·15-s + (−49.2 + 40.9i)16-s + 88.2·17-s + ⋯ |
L(s) = 1 | + (−0.574 + 0.818i)2-s − 0.577i·3-s + (−0.339 − 0.940i)4-s − 1.79·5-s + (0.472 + 0.331i)6-s + 1.78i·7-s + (0.964 + 0.262i)8-s − 0.333·9-s + (1.03 − 1.46i)10-s + 0.205·11-s + (−0.543 + 0.196i)12-s + (−0.633 + 0.773i)13-s + (−1.46 − 1.02i)14-s + 1.03i·15-s + (−0.769 + 0.639i)16-s + 1.25·17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 312 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.580 + 0.814i)\, \overline{\Lambda}(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 312 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & (0.580 + 0.814i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(2)\) |
\(\approx\) |
\(0.3061681829\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.3061681829\) |
\(L(\frac{5}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (1.62 - 2.31i)T \) |
| 3 | \( 1 + 3iT \) |
| 13 | \( 1 + (29.7 - 36.2i)T \) |
good | 5 | \( 1 + 20.0T + 125T^{2} \) |
| 7 | \( 1 - 33.1iT - 343T^{2} \) |
| 11 | \( 1 - 7.50T + 1.33e3T^{2} \) |
| 17 | \( 1 - 88.2T + 4.91e3T^{2} \) |
| 19 | \( 1 + 43.0T + 6.85e3T^{2} \) |
| 23 | \( 1 + 192.T + 1.21e4T^{2} \) |
| 29 | \( 1 + 133. iT - 2.43e4T^{2} \) |
| 31 | \( 1 + 114. iT - 2.97e4T^{2} \) |
| 37 | \( 1 + 59.6T + 5.06e4T^{2} \) |
| 41 | \( 1 + 505. iT - 6.89e4T^{2} \) |
| 43 | \( 1 - 142. iT - 7.95e4T^{2} \) |
| 47 | \( 1 - 97.2iT - 1.03e5T^{2} \) |
| 53 | \( 1 + 141. iT - 1.48e5T^{2} \) |
| 59 | \( 1 - 794.T + 2.05e5T^{2} \) |
| 61 | \( 1 + 124. iT - 2.26e5T^{2} \) |
| 67 | \( 1 - 174.T + 3.00e5T^{2} \) |
| 71 | \( 1 + 519. iT - 3.57e5T^{2} \) |
| 73 | \( 1 - 616. iT - 3.89e5T^{2} \) |
| 79 | \( 1 - 937.T + 4.93e5T^{2} \) |
| 83 | \( 1 + 1.14e3T + 5.71e5T^{2} \) |
| 89 | \( 1 + 15.8iT - 7.04e5T^{2} \) |
| 97 | \( 1 - 481. iT - 9.12e5T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−11.41955932198992060415819452813, −9.885852090845465862997375413131, −8.810091560858840855663683832173, −8.145085704381023186366153719456, −7.48640637171887984391151094749, −6.35631574649420557245787892110, −5.35635971193052173852542274783, −4.00869392754295006160156270524, −2.17797659682752133883260165592, −0.19377890161410727837721888264,
0.871673197118746359271607380181, 3.31306934738544358187255432533, 3.88449788971339079094683441742, 4.73063234444842749042329282155, 7.08157595550907626811304158607, 7.80569403461171258238389131636, 8.376483940315759307022547620621, 9.964253457650350038394627941844, 10.39206071674242216222629301601, 11.25031747195643483468856702493