L(s) = 1 | + (2.56 + 1.18i)2-s + 3i·3-s + (5.20 + 6.07i)4-s + 8.43·5-s + (−3.54 + 7.70i)6-s + 8.36i·7-s + (6.20 + 21.7i)8-s − 9·9-s + (21.6 + 9.97i)10-s − 57.7·11-s + (−18.2 + 15.6i)12-s + (18.9 + 42.8i)13-s + (−9.88 + 21.5i)14-s + 25.3i·15-s + (−9.78 + 63.2i)16-s − 72.1·17-s + ⋯ |
L(s) = 1 | + (0.908 + 0.417i)2-s + 0.577i·3-s + (0.650 + 0.759i)4-s + 0.754·5-s + (−0.241 + 0.524i)6-s + 0.451i·7-s + (0.274 + 0.961i)8-s − 0.333·9-s + (0.685 + 0.315i)10-s − 1.58·11-s + (−0.438 + 0.375i)12-s + (0.404 + 0.914i)13-s + (−0.188 + 0.410i)14-s + 0.435i·15-s + (−0.152 + 0.988i)16-s − 1.03·17-s + ⋯ |
Λ(s)=(=(312s/2ΓC(s)L(s)(−0.639−0.768i)Λ(4−s)
Λ(s)=(=(312s/2ΓC(s+3/2)L(s)(−0.639−0.768i)Λ(1−s)
Degree: |
2 |
Conductor: |
312
= 23⋅3⋅13
|
Sign: |
−0.639−0.768i
|
Analytic conductor: |
18.4085 |
Root analytic conductor: |
4.29052 |
Motivic weight: |
3 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ312(181,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 312, ( :3/2), −0.639−0.768i)
|
Particular Values
L(2) |
≈ |
3.248111219 |
L(21) |
≈ |
3.248111219 |
L(25) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+(−2.56−1.18i)T |
| 3 | 1−3iT |
| 13 | 1+(−18.9−42.8i)T |
good | 5 | 1−8.43T+125T2 |
| 7 | 1−8.36iT−343T2 |
| 11 | 1+57.7T+1.33e3T2 |
| 17 | 1+72.1T+4.91e3T2 |
| 19 | 1−144.T+6.85e3T2 |
| 23 | 1−168.T+1.21e4T2 |
| 29 | 1+96.0iT−2.43e4T2 |
| 31 | 1−59.3iT−2.97e4T2 |
| 37 | 1+187.T+5.06e4T2 |
| 41 | 1−211.iT−6.89e4T2 |
| 43 | 1+160.iT−7.95e4T2 |
| 47 | 1−539.iT−1.03e5T2 |
| 53 | 1+583.iT−1.48e5T2 |
| 59 | 1+236.T+2.05e5T2 |
| 61 | 1+438.iT−2.26e5T2 |
| 67 | 1−639.T+3.00e5T2 |
| 71 | 1−79.3iT−3.57e5T2 |
| 73 | 1+40.6iT−3.89e5T2 |
| 79 | 1−807.T+4.93e5T2 |
| 83 | 1−1.39e3T+5.71e5T2 |
| 89 | 1+1.05e3iT−7.04e5T2 |
| 97 | 1−1.00e3iT−9.12e5T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−11.53666799650851135170409518316, −10.87584106206286645340696038962, −9.682589747089382430201442678124, −8.753562279185520140106136995720, −7.59261388393308480572340229970, −6.44712784942574454934731994346, −5.39921920182866777775900762440, −4.81286722136832984503517846636, −3.27692809030279181221359495473, −2.20858176488484170612119259192,
0.865551365594580357964064637576, 2.32694769031476200239141208591, 3.32471884527527495618411211583, 5.09917030626934351509719817184, 5.61956966384707531022248071384, 6.90032764023071160689080763960, 7.71951610740931399701460647240, 9.199092010495217900981986228711, 10.40621136120507637093999510939, 10.84159398357218634775754806856