L(s) = 1 | + (−2.09 − 1.90i)2-s + 3i·3-s + (0.748 + 7.96i)4-s + 5.98·5-s + (5.71 − 6.27i)6-s + 13.5i·7-s + (13.5 − 18.0i)8-s − 9·9-s + (−12.5 − 11.3i)10-s + 38.8·11-s + (−23.8 + 2.24i)12-s + (17.8 − 43.3i)13-s + (25.8 − 28.3i)14-s + 17.9i·15-s + (−62.8 + 11.9i)16-s + 10.7·17-s + ⋯ |
L(s) = 1 | + (−0.739 − 0.673i)2-s + 0.577i·3-s + (0.0935 + 0.995i)4-s + 0.535·5-s + (0.388 − 0.426i)6-s + 0.732i·7-s + (0.601 − 0.799i)8-s − 0.333·9-s + (−0.395 − 0.360i)10-s + 1.06·11-s + (−0.574 + 0.0540i)12-s + (0.380 − 0.924i)13-s + (0.493 − 0.541i)14-s + 0.308i·15-s + (−0.982 + 0.186i)16-s + 0.153·17-s + ⋯ |
Λ(s)=(=(312s/2ΓC(s)L(s)(0.859−0.510i)Λ(4−s)
Λ(s)=(=(312s/2ΓC(s+3/2)L(s)(0.859−0.510i)Λ(1−s)
Degree: |
2 |
Conductor: |
312
= 23⋅3⋅13
|
Sign: |
0.859−0.510i
|
Analytic conductor: |
18.4085 |
Root analytic conductor: |
4.29052 |
Motivic weight: |
3 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ312(181,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 312, ( :3/2), 0.859−0.510i)
|
Particular Values
L(2) |
≈ |
1.469489644 |
L(21) |
≈ |
1.469489644 |
L(25) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+(2.09+1.90i)T |
| 3 | 1−3iT |
| 13 | 1+(−17.8+43.3i)T |
good | 5 | 1−5.98T+125T2 |
| 7 | 1−13.5iT−343T2 |
| 11 | 1−38.8T+1.33e3T2 |
| 17 | 1−10.7T+4.91e3T2 |
| 19 | 1−50.0T+6.85e3T2 |
| 23 | 1−58.0T+1.21e4T2 |
| 29 | 1−140.iT−2.43e4T2 |
| 31 | 1−49.2iT−2.97e4T2 |
| 37 | 1−109.T+5.06e4T2 |
| 41 | 1−200.iT−6.89e4T2 |
| 43 | 1−53.5iT−7.95e4T2 |
| 47 | 1−95.3iT−1.03e5T2 |
| 53 | 1−385.iT−1.48e5T2 |
| 59 | 1−305.T+2.05e5T2 |
| 61 | 1−164.iT−2.26e5T2 |
| 67 | 1−962.T+3.00e5T2 |
| 71 | 1+195.iT−3.57e5T2 |
| 73 | 1+317.iT−3.89e5T2 |
| 79 | 1+221.T+4.93e5T2 |
| 83 | 1−445.T+5.71e5T2 |
| 89 | 1−523.iT−7.04e5T2 |
| 97 | 1−147.iT−9.12e5T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−11.21134155262245655947271730088, −10.29240086876063117644557363074, −9.431831510962932626652739838940, −8.879474285033143345829764150546, −7.82050673187444742489914277715, −6.44055748069644478768753340046, −5.27591898346481411366751168289, −3.78756435599315693963559721972, −2.71747755373699698729287805497, −1.20755407090072979891103423082,
0.839364575551442153096040475399, 1.95549895716410814754300699083, 4.05680582004683615166751939017, 5.56886203315045972951755443732, 6.55160106545179815221942918544, 7.17342835573860584688802977576, 8.257395421369844316372558973403, 9.277368849927655830647621461775, 9.916512162522840508832480469761, 11.13120974560011646303339402236