L(s) = 1 | + (−1.98 + 2.01i)2-s + 3i·3-s + (−0.145 − 7.99i)4-s + 19.4·5-s + (−6.05 − 5.94i)6-s − 8.53i·7-s + (16.4 + 15.5i)8-s − 9·9-s + (−38.5 + 39.2i)10-s − 49.3·11-s + (23.9 − 0.436i)12-s + (−30.7 + 35.3i)13-s + (17.2 + 16.9i)14-s + 58.2i·15-s + (−63.9 + 2.32i)16-s + 117.·17-s + ⋯ |
L(s) = 1 | + (−0.700 + 0.713i)2-s + 0.577i·3-s + (−0.0181 − 0.999i)4-s + 1.73·5-s + (−0.411 − 0.404i)6-s − 0.460i·7-s + (0.726 + 0.687i)8-s − 0.333·9-s + (−1.21 + 1.24i)10-s − 1.35·11-s + (0.577 − 0.0104i)12-s + (−0.656 + 0.754i)13-s + (0.328 + 0.322i)14-s + 1.00i·15-s + (−0.999 + 0.0363i)16-s + 1.67·17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 312 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.0966 - 0.995i)\, \overline{\Lambda}(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 312 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & (-0.0966 - 0.995i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(2)\) |
\(\approx\) |
\(1.625998429\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.625998429\) |
\(L(\frac{5}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (1.98 - 2.01i)T \) |
| 3 | \( 1 - 3iT \) |
| 13 | \( 1 + (30.7 - 35.3i)T \) |
good | 5 | \( 1 - 19.4T + 125T^{2} \) |
| 7 | \( 1 + 8.53iT - 343T^{2} \) |
| 11 | \( 1 + 49.3T + 1.33e3T^{2} \) |
| 17 | \( 1 - 117.T + 4.91e3T^{2} \) |
| 19 | \( 1 - 26.5T + 6.85e3T^{2} \) |
| 23 | \( 1 - 117.T + 1.21e4T^{2} \) |
| 29 | \( 1 - 222. iT - 2.43e4T^{2} \) |
| 31 | \( 1 - 240. iT - 2.97e4T^{2} \) |
| 37 | \( 1 - 192.T + 5.06e4T^{2} \) |
| 41 | \( 1 + 4.97iT - 6.89e4T^{2} \) |
| 43 | \( 1 - 184. iT - 7.95e4T^{2} \) |
| 47 | \( 1 + 410. iT - 1.03e5T^{2} \) |
| 53 | \( 1 - 501. iT - 1.48e5T^{2} \) |
| 59 | \( 1 + 353.T + 2.05e5T^{2} \) |
| 61 | \( 1 + 268. iT - 2.26e5T^{2} \) |
| 67 | \( 1 - 623.T + 3.00e5T^{2} \) |
| 71 | \( 1 + 313. iT - 3.57e5T^{2} \) |
| 73 | \( 1 - 254. iT - 3.89e5T^{2} \) |
| 79 | \( 1 - 866.T + 4.93e5T^{2} \) |
| 83 | \( 1 + 901.T + 5.71e5T^{2} \) |
| 89 | \( 1 - 701. iT - 7.04e5T^{2} \) |
| 97 | \( 1 - 531. iT - 9.12e5T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.84613179085647323206478518957, −10.28220415423339957547651855093, −9.658121795261625306598626426385, −8.905502088659096942446191582316, −7.62534829571809221414858940425, −6.65970680584818620298851897616, −5.38965448427754564485884585625, −5.07968049000033226434953812066, −2.77623915075750906937957911914, −1.29511750649894900055775075103,
0.838785801215577330135936578624, 2.27440959732291163605150805336, 2.87076579484850844144756773160, 5.20697236100635569810167651402, 5.95383435502165232597141092799, 7.44509848009414898925810199506, 8.154294314223317523771442805050, 9.486701936480599324580159769734, 9.913539995138962051326913916535, 10.77039814440059133096486136599