L(s) = 1 | + (−1.98 + 2.01i)2-s + 3i·3-s + (−0.145 − 7.99i)4-s + 19.4·5-s + (−6.05 − 5.94i)6-s − 8.53i·7-s + (16.4 + 15.5i)8-s − 9·9-s + (−38.5 + 39.2i)10-s − 49.3·11-s + (23.9 − 0.436i)12-s + (−30.7 + 35.3i)13-s + (17.2 + 16.9i)14-s + 58.2i·15-s + (−63.9 + 2.32i)16-s + 117.·17-s + ⋯ |
L(s) = 1 | + (−0.700 + 0.713i)2-s + 0.577i·3-s + (−0.0181 − 0.999i)4-s + 1.73·5-s + (−0.411 − 0.404i)6-s − 0.460i·7-s + (0.726 + 0.687i)8-s − 0.333·9-s + (−1.21 + 1.24i)10-s − 1.35·11-s + (0.577 − 0.0104i)12-s + (−0.656 + 0.754i)13-s + (0.328 + 0.322i)14-s + 1.00i·15-s + (−0.999 + 0.0363i)16-s + 1.67·17-s + ⋯ |
Λ(s)=(=(312s/2ΓC(s)L(s)(−0.0966−0.995i)Λ(4−s)
Λ(s)=(=(312s/2ΓC(s+3/2)L(s)(−0.0966−0.995i)Λ(1−s)
Degree: |
2 |
Conductor: |
312
= 23⋅3⋅13
|
Sign: |
−0.0966−0.995i
|
Analytic conductor: |
18.4085 |
Root analytic conductor: |
4.29052 |
Motivic weight: |
3 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ312(181,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 312, ( :3/2), −0.0966−0.995i)
|
Particular Values
L(2) |
≈ |
1.625998429 |
L(21) |
≈ |
1.625998429 |
L(25) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+(1.98−2.01i)T |
| 3 | 1−3iT |
| 13 | 1+(30.7−35.3i)T |
good | 5 | 1−19.4T+125T2 |
| 7 | 1+8.53iT−343T2 |
| 11 | 1+49.3T+1.33e3T2 |
| 17 | 1−117.T+4.91e3T2 |
| 19 | 1−26.5T+6.85e3T2 |
| 23 | 1−117.T+1.21e4T2 |
| 29 | 1−222.iT−2.43e4T2 |
| 31 | 1−240.iT−2.97e4T2 |
| 37 | 1−192.T+5.06e4T2 |
| 41 | 1+4.97iT−6.89e4T2 |
| 43 | 1−184.iT−7.95e4T2 |
| 47 | 1+410.iT−1.03e5T2 |
| 53 | 1−501.iT−1.48e5T2 |
| 59 | 1+353.T+2.05e5T2 |
| 61 | 1+268.iT−2.26e5T2 |
| 67 | 1−623.T+3.00e5T2 |
| 71 | 1+313.iT−3.57e5T2 |
| 73 | 1−254.iT−3.89e5T2 |
| 79 | 1−866.T+4.93e5T2 |
| 83 | 1+901.T+5.71e5T2 |
| 89 | 1−701.iT−7.04e5T2 |
| 97 | 1−531.iT−9.12e5T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−10.84613179085647323206478518957, −10.28220415423339957547651855093, −9.658121795261625306598626426385, −8.905502088659096942446191582316, −7.62534829571809221414858940425, −6.65970680584818620298851897616, −5.38965448427754564485884585625, −5.07968049000033226434953812066, −2.77623915075750906937957911914, −1.29511750649894900055775075103,
0.838785801215577330135936578624, 2.27440959732291163605150805336, 2.87076579484850844144756773160, 5.20697236100635569810167651402, 5.95383435502165232597141092799, 7.44509848009414898925810199506, 8.154294314223317523771442805050, 9.486701936480599324580159769734, 9.913539995138962051326913916535, 10.77039814440059133096486136599