L(s) = 1 | + (−1.33 + 2.49i)2-s − 3i·3-s + (−4.41 − 6.67i)4-s + 12.3·5-s + (7.47 + 4.01i)6-s + 26.6i·7-s + (22.5 − 2.06i)8-s − 9·9-s + (−16.5 + 30.8i)10-s − 33.2·11-s + (−20.0 + 13.2i)12-s + (46.5 − 5.78i)13-s + (−66.3 − 35.6i)14-s − 37.1i·15-s + (−25.0 + 58.8i)16-s + 16.3·17-s + ⋯ |
L(s) = 1 | + (−0.473 + 0.880i)2-s − 0.577i·3-s + (−0.551 − 0.834i)4-s + 1.10·5-s + (0.508 + 0.273i)6-s + 1.43i·7-s + (0.995 − 0.0911i)8-s − 0.333·9-s + (−0.523 + 0.974i)10-s − 0.911·11-s + (−0.481 + 0.318i)12-s + (0.992 − 0.123i)13-s + (−1.26 − 0.680i)14-s − 0.638i·15-s + (−0.391 + 0.920i)16-s + 0.232·17-s + ⋯ |
Λ(s)=(=(312s/2ΓC(s)L(s)(−0.213−0.976i)Λ(4−s)
Λ(s)=(=(312s/2ΓC(s+3/2)L(s)(−0.213−0.976i)Λ(1−s)
Degree: |
2 |
Conductor: |
312
= 23⋅3⋅13
|
Sign: |
−0.213−0.976i
|
Analytic conductor: |
18.4085 |
Root analytic conductor: |
4.29052 |
Motivic weight: |
3 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ312(181,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 312, ( :3/2), −0.213−0.976i)
|
Particular Values
L(2) |
≈ |
1.444865151 |
L(21) |
≈ |
1.444865151 |
L(25) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+(1.33−2.49i)T |
| 3 | 1+3iT |
| 13 | 1+(−46.5+5.78i)T |
good | 5 | 1−12.3T+125T2 |
| 7 | 1−26.6iT−343T2 |
| 11 | 1+33.2T+1.33e3T2 |
| 17 | 1−16.3T+4.91e3T2 |
| 19 | 1+43.9T+6.85e3T2 |
| 23 | 1−60.7T+1.21e4T2 |
| 29 | 1−218.iT−2.43e4T2 |
| 31 | 1−12.9iT−2.97e4T2 |
| 37 | 1−295.T+5.06e4T2 |
| 41 | 1−241.iT−6.89e4T2 |
| 43 | 1−290.iT−7.95e4T2 |
| 47 | 1−385.iT−1.03e5T2 |
| 53 | 1+220.iT−1.48e5T2 |
| 59 | 1−310.T+2.05e5T2 |
| 61 | 1−156.iT−2.26e5T2 |
| 67 | 1+586.T+3.00e5T2 |
| 71 | 1−1.14e3iT−3.57e5T2 |
| 73 | 1+792.iT−3.89e5T2 |
| 79 | 1+1.06e3T+4.93e5T2 |
| 83 | 1−1.48e3T+5.71e5T2 |
| 89 | 1−216.iT−7.04e5T2 |
| 97 | 1−789.iT−9.12e5T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−11.36429788779593588271429192996, −10.36491626838017630915639789110, −9.318160004855737600442749965093, −8.661975184091095532975861290924, −7.78219507055084595203912404113, −6.39697787492149122262957754639, −5.86940775746214712961721036347, −5.04556883808092908467625052267, −2.66379590297954384133863008641, −1.40580150503090330471506532418,
0.66204714787393980638487822392, 2.16319334727392126300187008625, 3.57589525370663841855502259461, 4.56100936331362240759740445698, 5.90037802704395272039271894943, 7.33276290001017693370602897220, 8.388493182348829083579717730408, 9.421922665909396306444933004387, 10.29682239921751268249073651615, 10.58549328893972429471539680105