L(s) = 1 | + (−1.04 + 2.62i)2-s + 3i·3-s + (−5.81 − 5.49i)4-s − 7.49·5-s + (−7.88 − 3.13i)6-s − 9.78i·7-s + (20.5 − 9.53i)8-s − 9·9-s + (7.83 − 19.6i)10-s + 72.0·11-s + (16.4 − 17.4i)12-s + (−46.8 + 2.05i)13-s + (25.7 + 10.2i)14-s − 22.4i·15-s + (3.59 + 63.8i)16-s + 14.0·17-s + ⋯ |
L(s) = 1 | + (−0.369 + 0.929i)2-s + 0.577i·3-s + (−0.726 − 0.686i)4-s − 0.670·5-s + (−0.536 − 0.213i)6-s − 0.528i·7-s + (0.906 − 0.421i)8-s − 0.333·9-s + (0.247 − 0.622i)10-s + 1.97·11-s + (0.396 − 0.419i)12-s + (−0.999 + 0.0439i)13-s + (0.490 + 0.195i)14-s − 0.386i·15-s + (0.0561 + 0.998i)16-s + 0.200·17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 312 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.460 - 0.887i)\, \overline{\Lambda}(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 312 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & (-0.460 - 0.887i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(2)\) |
\(\approx\) |
\(1.184505123\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.184505123\) |
\(L(\frac{5}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (1.04 - 2.62i)T \) |
| 3 | \( 1 - 3iT \) |
| 13 | \( 1 + (46.8 - 2.05i)T \) |
good | 5 | \( 1 + 7.49T + 125T^{2} \) |
| 7 | \( 1 + 9.78iT - 343T^{2} \) |
| 11 | \( 1 - 72.0T + 1.33e3T^{2} \) |
| 17 | \( 1 - 14.0T + 4.91e3T^{2} \) |
| 19 | \( 1 - 126.T + 6.85e3T^{2} \) |
| 23 | \( 1 + 74.7T + 1.21e4T^{2} \) |
| 29 | \( 1 - 177. iT - 2.43e4T^{2} \) |
| 31 | \( 1 - 204. iT - 2.97e4T^{2} \) |
| 37 | \( 1 - 262.T + 5.06e4T^{2} \) |
| 41 | \( 1 + 376. iT - 6.89e4T^{2} \) |
| 43 | \( 1 - 179. iT - 7.95e4T^{2} \) |
| 47 | \( 1 - 4.21iT - 1.03e5T^{2} \) |
| 53 | \( 1 - 102. iT - 1.48e5T^{2} \) |
| 59 | \( 1 - 231.T + 2.05e5T^{2} \) |
| 61 | \( 1 - 876. iT - 2.26e5T^{2} \) |
| 67 | \( 1 + 597.T + 3.00e5T^{2} \) |
| 71 | \( 1 - 576. iT - 3.57e5T^{2} \) |
| 73 | \( 1 - 657. iT - 3.89e5T^{2} \) |
| 79 | \( 1 + 137.T + 4.93e5T^{2} \) |
| 83 | \( 1 - 1.08e3T + 5.71e5T^{2} \) |
| 89 | \( 1 + 269. iT - 7.04e5T^{2} \) |
| 97 | \( 1 - 1.73e3iT - 9.12e5T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−11.53947567895673986035317535469, −10.30663427965901806444364974154, −9.513674458265010595060923729163, −8.791317198646860638801246243497, −7.54989052839127265544126281062, −6.94116694288333441326695923553, −5.65585945130952517219206984440, −4.45903637342246737480387136350, −3.65635492441444926701992801445, −1.06249392947142418816384505738,
0.64972694753019423033842158365, 2.03487049054812027590155232920, 3.41703682906410060581237309132, 4.47758480108955316600700040135, 6.03996142586831235402914977926, 7.42073823198605277973640575224, 8.072907015690593536248147135230, 9.340838262681964120025918721630, 9.741027373783726730419614075139, 11.45683992653048152170014871932