L(s) = 1 | + (0.0631 + 2.82i)2-s − 3i·3-s + (−7.99 + 0.357i)4-s − 11.9·5-s + (8.48 − 0.189i)6-s − 11.1i·7-s + (−1.51 − 22.5i)8-s − 9·9-s + (−0.756 − 33.8i)10-s − 24.4·11-s + (1.07 + 23.9i)12-s + (−16.6 + 43.8i)13-s + (31.6 − 0.706i)14-s + 35.9i·15-s + (63.7 − 5.70i)16-s + 68.2·17-s + ⋯ |
L(s) = 1 | + (0.0223 + 0.999i)2-s − 0.577i·3-s + (−0.999 + 0.0446i)4-s − 1.07·5-s + (0.577 − 0.0128i)6-s − 0.604i·7-s + (−0.0669 − 0.997i)8-s − 0.333·9-s + (−0.0239 − 1.07i)10-s − 0.669·11-s + (0.0257 + 0.576i)12-s + (−0.355 + 0.934i)13-s + (0.604 − 0.0134i)14-s + 0.618i·15-s + (0.996 − 0.0891i)16-s + 0.974·17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 312 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.292 - 0.956i)\, \overline{\Lambda}(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 312 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & (0.292 - 0.956i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(2)\) |
\(\approx\) |
\(1.056267220\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.056267220\) |
\(L(\frac{5}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (-0.0631 - 2.82i)T \) |
| 3 | \( 1 + 3iT \) |
| 13 | \( 1 + (16.6 - 43.8i)T \) |
good | 5 | \( 1 + 11.9T + 125T^{2} \) |
| 7 | \( 1 + 11.1iT - 343T^{2} \) |
| 11 | \( 1 + 24.4T + 1.33e3T^{2} \) |
| 17 | \( 1 - 68.2T + 4.91e3T^{2} \) |
| 19 | \( 1 - 29.3T + 6.85e3T^{2} \) |
| 23 | \( 1 - 197.T + 1.21e4T^{2} \) |
| 29 | \( 1 - 184. iT - 2.43e4T^{2} \) |
| 31 | \( 1 + 32.3iT - 2.97e4T^{2} \) |
| 37 | \( 1 - 81.8T + 5.06e4T^{2} \) |
| 41 | \( 1 - 159. iT - 6.89e4T^{2} \) |
| 43 | \( 1 + 400. iT - 7.95e4T^{2} \) |
| 47 | \( 1 - 183. iT - 1.03e5T^{2} \) |
| 53 | \( 1 - 220. iT - 1.48e5T^{2} \) |
| 59 | \( 1 - 464.T + 2.05e5T^{2} \) |
| 61 | \( 1 - 182. iT - 2.26e5T^{2} \) |
| 67 | \( 1 + 292.T + 3.00e5T^{2} \) |
| 71 | \( 1 - 913. iT - 3.57e5T^{2} \) |
| 73 | \( 1 + 300. iT - 3.89e5T^{2} \) |
| 79 | \( 1 + 61.6T + 4.93e5T^{2} \) |
| 83 | \( 1 - 381.T + 5.71e5T^{2} \) |
| 89 | \( 1 + 172. iT - 7.04e5T^{2} \) |
| 97 | \( 1 + 933. iT - 9.12e5T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−11.59360644686961799736764004594, −10.47044247302731738024323367772, −9.238760211121158247772420434840, −8.269532713149982705653952532168, −7.31751729998919280187321467982, −7.05163277700182162672599948190, −5.53052006007092475726718159284, −4.47260867472108062548856580739, −3.28236511013811096299323105289, −0.873581271658875457501815729818,
0.57501740409025770203239732198, 2.71245713261597840956784609074, 3.53906435177520969497534979974, 4.80647776535702995879217479533, 5.58973340132067312749575438354, 7.62439704519346621585300980417, 8.321951507165944838208766995279, 9.392934503917987432752847616051, 10.25138423640471604559609172088, 11.11525704040506633920349460638