L(s) = 1 | + (0.0631 + 2.82i)2-s − 3i·3-s + (−7.99 + 0.357i)4-s − 11.9·5-s + (8.48 − 0.189i)6-s − 11.1i·7-s + (−1.51 − 22.5i)8-s − 9·9-s + (−0.756 − 33.8i)10-s − 24.4·11-s + (1.07 + 23.9i)12-s + (−16.6 + 43.8i)13-s + (31.6 − 0.706i)14-s + 35.9i·15-s + (63.7 − 5.70i)16-s + 68.2·17-s + ⋯ |
L(s) = 1 | + (0.0223 + 0.999i)2-s − 0.577i·3-s + (−0.999 + 0.0446i)4-s − 1.07·5-s + (0.577 − 0.0128i)6-s − 0.604i·7-s + (−0.0669 − 0.997i)8-s − 0.333·9-s + (−0.0239 − 1.07i)10-s − 0.669·11-s + (0.0257 + 0.576i)12-s + (−0.355 + 0.934i)13-s + (0.604 − 0.0134i)14-s + 0.618i·15-s + (0.996 − 0.0891i)16-s + 0.974·17-s + ⋯ |
Λ(s)=(=(312s/2ΓC(s)L(s)(0.292−0.956i)Λ(4−s)
Λ(s)=(=(312s/2ΓC(s+3/2)L(s)(0.292−0.956i)Λ(1−s)
Degree: |
2 |
Conductor: |
312
= 23⋅3⋅13
|
Sign: |
0.292−0.956i
|
Analytic conductor: |
18.4085 |
Root analytic conductor: |
4.29052 |
Motivic weight: |
3 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ312(181,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 312, ( :3/2), 0.292−0.956i)
|
Particular Values
L(2) |
≈ |
1.056267220 |
L(21) |
≈ |
1.056267220 |
L(25) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+(−0.0631−2.82i)T |
| 3 | 1+3iT |
| 13 | 1+(16.6−43.8i)T |
good | 5 | 1+11.9T+125T2 |
| 7 | 1+11.1iT−343T2 |
| 11 | 1+24.4T+1.33e3T2 |
| 17 | 1−68.2T+4.91e3T2 |
| 19 | 1−29.3T+6.85e3T2 |
| 23 | 1−197.T+1.21e4T2 |
| 29 | 1−184.iT−2.43e4T2 |
| 31 | 1+32.3iT−2.97e4T2 |
| 37 | 1−81.8T+5.06e4T2 |
| 41 | 1−159.iT−6.89e4T2 |
| 43 | 1+400.iT−7.95e4T2 |
| 47 | 1−183.iT−1.03e5T2 |
| 53 | 1−220.iT−1.48e5T2 |
| 59 | 1−464.T+2.05e5T2 |
| 61 | 1−182.iT−2.26e5T2 |
| 67 | 1+292.T+3.00e5T2 |
| 71 | 1−913.iT−3.57e5T2 |
| 73 | 1+300.iT−3.89e5T2 |
| 79 | 1+61.6T+4.93e5T2 |
| 83 | 1−381.T+5.71e5T2 |
| 89 | 1+172.iT−7.04e5T2 |
| 97 | 1+933.iT−9.12e5T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−11.59360644686961799736764004594, −10.47044247302731738024323367772, −9.238760211121158247772420434840, −8.269532713149982705653952532168, −7.31751729998919280187321467982, −7.05163277700182162672599948190, −5.53052006007092475726718159284, −4.47260867472108062548856580739, −3.28236511013811096299323105289, −0.873581271658875457501815729818,
0.57501740409025770203239732198, 2.71245713261597840956784609074, 3.53906435177520969497534979974, 4.80647776535702995879217479533, 5.58973340132067312749575438354, 7.62439704519346621585300980417, 8.321951507165944838208766995279, 9.392934503917987432752847616051, 10.25138423640471604559609172088, 11.11525704040506633920349460638