L(s) = 1 | + (2.48 + 1.34i)2-s + 3i·3-s + (4.36 + 6.70i)4-s − 8.37·5-s + (−4.04 + 7.46i)6-s + 16.5i·7-s + (1.83 + 22.5i)8-s − 9·9-s + (−20.8 − 11.2i)10-s + 23.2·11-s + (−20.1 + 13.1i)12-s + (46.2 + 7.80i)13-s + (−22.3 + 41.2i)14-s − 25.1i·15-s + (−25.8 + 58.5i)16-s − 14.7·17-s + ⋯ |
L(s) = 1 | + (0.879 + 0.476i)2-s + 0.577i·3-s + (0.546 + 0.837i)4-s − 0.748·5-s + (−0.275 + 0.507i)6-s + 0.896i·7-s + (0.0811 + 0.996i)8-s − 0.333·9-s + (−0.658 − 0.356i)10-s + 0.636·11-s + (−0.483 + 0.315i)12-s + (0.986 + 0.166i)13-s + (−0.426 + 0.787i)14-s − 0.432i·15-s + (−0.403 + 0.914i)16-s − 0.210·17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 312 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.996 - 0.0860i)\, \overline{\Lambda}(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 312 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & (-0.996 - 0.0860i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(2)\) |
\(\approx\) |
\(2.163408246\) |
\(L(\frac12)\) |
\(\approx\) |
\(2.163408246\) |
\(L(\frac{5}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (-2.48 - 1.34i)T \) |
| 3 | \( 1 - 3iT \) |
| 13 | \( 1 + (-46.2 - 7.80i)T \) |
good | 5 | \( 1 + 8.37T + 125T^{2} \) |
| 7 | \( 1 - 16.5iT - 343T^{2} \) |
| 11 | \( 1 - 23.2T + 1.33e3T^{2} \) |
| 17 | \( 1 + 14.7T + 4.91e3T^{2} \) |
| 19 | \( 1 + 124.T + 6.85e3T^{2} \) |
| 23 | \( 1 + 173.T + 1.21e4T^{2} \) |
| 29 | \( 1 + 126. iT - 2.43e4T^{2} \) |
| 31 | \( 1 + 27.9iT - 2.97e4T^{2} \) |
| 37 | \( 1 - 362.T + 5.06e4T^{2} \) |
| 41 | \( 1 - 309. iT - 6.89e4T^{2} \) |
| 43 | \( 1 - 556. iT - 7.95e4T^{2} \) |
| 47 | \( 1 + 163. iT - 1.03e5T^{2} \) |
| 53 | \( 1 + 334. iT - 1.48e5T^{2} \) |
| 59 | \( 1 - 809.T + 2.05e5T^{2} \) |
| 61 | \( 1 + 6.20iT - 2.26e5T^{2} \) |
| 67 | \( 1 - 252.T + 3.00e5T^{2} \) |
| 71 | \( 1 - 822. iT - 3.57e5T^{2} \) |
| 73 | \( 1 - 449. iT - 3.89e5T^{2} \) |
| 79 | \( 1 + 547.T + 4.93e5T^{2} \) |
| 83 | \( 1 - 959.T + 5.71e5T^{2} \) |
| 89 | \( 1 - 656. iT - 7.04e5T^{2} \) |
| 97 | \( 1 - 417. iT - 9.12e5T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−11.52879874462655633069649771878, −11.34681939070531383705730210832, −9.788313616366043376070553090631, −8.511456514363158702171059401776, −8.054899234184950866309436433126, −6.44569484078351549174391106035, −5.87303108264135567945577077580, −4.37010615724869702824724532413, −3.84714088051075071488881255599, −2.34929645918073698974987757608,
0.57432837841630311973721317642, 1.98616956370822765938944813801, 3.72361737186202038213536876384, 4.21248545600705779207786940540, 5.88109479339875727902185173974, 6.71480831637061740037282764632, 7.69816710341010240444017087584, 8.828554111890545078075309473181, 10.31249880282825864895902685794, 10.97755155254204262398737829132