L(s) = 1 | + (2.30 + 1.63i)2-s − 3i·3-s + (2.62 + 7.55i)4-s + 3.15·5-s + (4.91 − 6.91i)6-s + 31.8i·7-s + (−6.33 + 21.7i)8-s − 9·9-s + (7.28 + 5.17i)10-s − 30.3·11-s + (22.6 − 7.87i)12-s + (−42.8 − 18.9i)13-s + (−52.1 + 73.3i)14-s − 9.47i·15-s + (−50.2 + 39.6i)16-s + 33.4·17-s + ⋯ |
L(s) = 1 | + (0.814 + 0.579i)2-s − 0.577i·3-s + (0.328 + 0.944i)4-s + 0.282·5-s + (0.334 − 0.470i)6-s + 1.71i·7-s + (−0.280 + 0.959i)8-s − 0.333·9-s + (0.230 + 0.163i)10-s − 0.831·11-s + (0.545 − 0.189i)12-s + (−0.914 − 0.403i)13-s + (−0.995 + 1.40i)14-s − 0.163i·15-s + (−0.784 + 0.620i)16-s + 0.477·17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 312 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.765 - 0.644i)\, \overline{\Lambda}(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 312 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & (-0.765 - 0.644i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(2)\) |
\(\approx\) |
\(2.181363892\) |
\(L(\frac12)\) |
\(\approx\) |
\(2.181363892\) |
\(L(\frac{5}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (-2.30 - 1.63i)T \) |
| 3 | \( 1 + 3iT \) |
| 13 | \( 1 + (42.8 + 18.9i)T \) |
good | 5 | \( 1 - 3.15T + 125T^{2} \) |
| 7 | \( 1 - 31.8iT - 343T^{2} \) |
| 11 | \( 1 + 30.3T + 1.33e3T^{2} \) |
| 17 | \( 1 - 33.4T + 4.91e3T^{2} \) |
| 19 | \( 1 + 32.4T + 6.85e3T^{2} \) |
| 23 | \( 1 - 92.1T + 1.21e4T^{2} \) |
| 29 | \( 1 + 11.6iT - 2.43e4T^{2} \) |
| 31 | \( 1 - 328. iT - 2.97e4T^{2} \) |
| 37 | \( 1 - 271.T + 5.06e4T^{2} \) |
| 41 | \( 1 - 153. iT - 6.89e4T^{2} \) |
| 43 | \( 1 + 26.1iT - 7.95e4T^{2} \) |
| 47 | \( 1 + 72.2iT - 1.03e5T^{2} \) |
| 53 | \( 1 - 666. iT - 1.48e5T^{2} \) |
| 59 | \( 1 - 512.T + 2.05e5T^{2} \) |
| 61 | \( 1 + 527. iT - 2.26e5T^{2} \) |
| 67 | \( 1 - 863.T + 3.00e5T^{2} \) |
| 71 | \( 1 + 810. iT - 3.57e5T^{2} \) |
| 73 | \( 1 - 157. iT - 3.89e5T^{2} \) |
| 79 | \( 1 - 796.T + 4.93e5T^{2} \) |
| 83 | \( 1 - 69.5T + 5.71e5T^{2} \) |
| 89 | \( 1 - 1.63e3iT - 7.04e5T^{2} \) |
| 97 | \( 1 + 904. iT - 9.12e5T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−12.11581141192764893562146690843, −10.98395205473348751355055468120, −9.520439086257370532203801844613, −8.460155341715717213857930524257, −7.71959232544806552857610537059, −6.54823197114586738364337846327, −5.58185220359644124936355499772, −5.01027762790665390293750758906, −3.01453453683715713928464294288, −2.23896178067666223228653502375,
0.56751644935740964141343668151, 2.35078844318921428069062080928, 3.75394986958053568543166806119, 4.53603541389453771283699825542, 5.56409285141477231099783790725, 6.86326702476700258150113196485, 7.81884975615745781726973232631, 9.635147580454000534455052244731, 10.03737385537914793952315703128, 10.89990860290838448240169511491