L(s) = 1 | + (2.30 + 1.63i)2-s − 3i·3-s + (2.62 + 7.55i)4-s + 3.15·5-s + (4.91 − 6.91i)6-s + 31.8i·7-s + (−6.33 + 21.7i)8-s − 9·9-s + (7.28 + 5.17i)10-s − 30.3·11-s + (22.6 − 7.87i)12-s + (−42.8 − 18.9i)13-s + (−52.1 + 73.3i)14-s − 9.47i·15-s + (−50.2 + 39.6i)16-s + 33.4·17-s + ⋯ |
L(s) = 1 | + (0.814 + 0.579i)2-s − 0.577i·3-s + (0.328 + 0.944i)4-s + 0.282·5-s + (0.334 − 0.470i)6-s + 1.71i·7-s + (−0.280 + 0.959i)8-s − 0.333·9-s + (0.230 + 0.163i)10-s − 0.831·11-s + (0.545 − 0.189i)12-s + (−0.914 − 0.403i)13-s + (−0.995 + 1.40i)14-s − 0.163i·15-s + (−0.784 + 0.620i)16-s + 0.477·17-s + ⋯ |
Λ(s)=(=(312s/2ΓC(s)L(s)(−0.765−0.644i)Λ(4−s)
Λ(s)=(=(312s/2ΓC(s+3/2)L(s)(−0.765−0.644i)Λ(1−s)
Degree: |
2 |
Conductor: |
312
= 23⋅3⋅13
|
Sign: |
−0.765−0.644i
|
Analytic conductor: |
18.4085 |
Root analytic conductor: |
4.29052 |
Motivic weight: |
3 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ312(181,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 312, ( :3/2), −0.765−0.644i)
|
Particular Values
L(2) |
≈ |
2.181363892 |
L(21) |
≈ |
2.181363892 |
L(25) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+(−2.30−1.63i)T |
| 3 | 1+3iT |
| 13 | 1+(42.8+18.9i)T |
good | 5 | 1−3.15T+125T2 |
| 7 | 1−31.8iT−343T2 |
| 11 | 1+30.3T+1.33e3T2 |
| 17 | 1−33.4T+4.91e3T2 |
| 19 | 1+32.4T+6.85e3T2 |
| 23 | 1−92.1T+1.21e4T2 |
| 29 | 1+11.6iT−2.43e4T2 |
| 31 | 1−328.iT−2.97e4T2 |
| 37 | 1−271.T+5.06e4T2 |
| 41 | 1−153.iT−6.89e4T2 |
| 43 | 1+26.1iT−7.95e4T2 |
| 47 | 1+72.2iT−1.03e5T2 |
| 53 | 1−666.iT−1.48e5T2 |
| 59 | 1−512.T+2.05e5T2 |
| 61 | 1+527.iT−2.26e5T2 |
| 67 | 1−863.T+3.00e5T2 |
| 71 | 1+810.iT−3.57e5T2 |
| 73 | 1−157.iT−3.89e5T2 |
| 79 | 1−796.T+4.93e5T2 |
| 83 | 1−69.5T+5.71e5T2 |
| 89 | 1−1.63e3iT−7.04e5T2 |
| 97 | 1+904.iT−9.12e5T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−12.11581141192764893562146690843, −10.98395205473348751355055468120, −9.520439086257370532203801844613, −8.460155341715717213857930524257, −7.71959232544806552857610537059, −6.54823197114586738364337846327, −5.58185220359644124936355499772, −5.01027762790665390293750758906, −3.01453453683715713928464294288, −2.23896178067666223228653502375,
0.56751644935740964141343668151, 2.35078844318921428069062080928, 3.75394986958053568543166806119, 4.53603541389453771283699825542, 5.56409285141477231099783790725, 6.86326702476700258150113196485, 7.81884975615745781726973232631, 9.635147580454000534455052244731, 10.03737385537914793952315703128, 10.89990860290838448240169511491