L(s) = 1 | + (−2.30 + 1.63i)2-s + 3i·3-s + (2.62 − 7.55i)4-s − 3.15·5-s + (−4.91 − 6.91i)6-s + 31.8i·7-s + (6.33 + 21.7i)8-s − 9·9-s + (7.28 − 5.17i)10-s + 30.3·11-s + (22.6 + 7.87i)12-s + (42.8 + 18.9i)13-s + (−52.1 − 73.3i)14-s − 9.47i·15-s + (−50.2 − 39.6i)16-s + 33.4·17-s + ⋯ |
L(s) = 1 | + (−0.814 + 0.579i)2-s + 0.577i·3-s + (0.328 − 0.944i)4-s − 0.282·5-s + (−0.334 − 0.470i)6-s + 1.71i·7-s + (0.280 + 0.959i)8-s − 0.333·9-s + (0.230 − 0.163i)10-s + 0.831·11-s + (0.545 + 0.189i)12-s + (0.914 + 0.403i)13-s + (−0.995 − 1.40i)14-s − 0.163i·15-s + (−0.784 − 0.620i)16-s + 0.477·17-s + ⋯ |
Λ(s)=(=(312s/2ΓC(s)L(s)(−0.991−0.131i)Λ(4−s)
Λ(s)=(=(312s/2ΓC(s+3/2)L(s)(−0.991−0.131i)Λ(1−s)
Degree: |
2 |
Conductor: |
312
= 23⋅3⋅13
|
Sign: |
−0.991−0.131i
|
Analytic conductor: |
18.4085 |
Root analytic conductor: |
4.29052 |
Motivic weight: |
3 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ312(181,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 312, ( :3/2), −0.991−0.131i)
|
Particular Values
L(2) |
≈ |
1.027568342 |
L(21) |
≈ |
1.027568342 |
L(25) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+(2.30−1.63i)T |
| 3 | 1−3iT |
| 13 | 1+(−42.8−18.9i)T |
good | 5 | 1+3.15T+125T2 |
| 7 | 1−31.8iT−343T2 |
| 11 | 1−30.3T+1.33e3T2 |
| 17 | 1−33.4T+4.91e3T2 |
| 19 | 1−32.4T+6.85e3T2 |
| 23 | 1−92.1T+1.21e4T2 |
| 29 | 1−11.6iT−2.43e4T2 |
| 31 | 1−328.iT−2.97e4T2 |
| 37 | 1+271.T+5.06e4T2 |
| 41 | 1−153.iT−6.89e4T2 |
| 43 | 1−26.1iT−7.95e4T2 |
| 47 | 1+72.2iT−1.03e5T2 |
| 53 | 1+666.iT−1.48e5T2 |
| 59 | 1+512.T+2.05e5T2 |
| 61 | 1−527.iT−2.26e5T2 |
| 67 | 1+863.T+3.00e5T2 |
| 71 | 1+810.iT−3.57e5T2 |
| 73 | 1−157.iT−3.89e5T2 |
| 79 | 1−796.T+4.93e5T2 |
| 83 | 1+69.5T+5.71e5T2 |
| 89 | 1−1.63e3iT−7.04e5T2 |
| 97 | 1+904.iT−9.12e5T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−11.60991797118290477922401603321, −10.63383622784798505744943152787, −9.450014833855010997676675180181, −8.916023280722359084307607312523, −8.233358921504624572575301658212, −6.79634486975057073773830967905, −5.86305038718010086359414404583, −4.98247568220220865464294000133, −3.26206622350318468171778908791, −1.60744598075888426063148549028,
0.54493420098075271408603402426, 1.46332341580153686613683588306, 3.34950553880089636398630112727, 4.15868131237184831652942986795, 6.21748198319445463690786530278, 7.33006061554603667371430016224, 7.76704615303356423229135589488, 8.934578491759418462475888892257, 9.963615990521478754772273295794, 10.86235408483314418198233437155