L(s) = 1 | + (−2.81 − 0.274i)2-s + 3i·3-s + (7.84 + 1.54i)4-s − 8.71·5-s + (0.824 − 8.44i)6-s − 16.6i·7-s + (−21.6 − 6.51i)8-s − 9·9-s + (24.5 + 2.39i)10-s − 35.9·11-s + (−4.64 + 23.5i)12-s + (46.8 − 1.83i)13-s + (−4.58 + 46.9i)14-s − 26.1i·15-s + (59.2 + 24.2i)16-s + 23.1·17-s + ⋯ |
L(s) = 1 | + (−0.995 − 0.0971i)2-s + 0.577i·3-s + (0.981 + 0.193i)4-s − 0.779·5-s + (0.0560 − 0.574i)6-s − 0.899i·7-s + (−0.957 − 0.287i)8-s − 0.333·9-s + (0.775 + 0.0757i)10-s − 0.985·11-s + (−0.111 + 0.566i)12-s + (0.999 − 0.0392i)13-s + (−0.0874 + 0.895i)14-s − 0.450i·15-s + (0.925 + 0.379i)16-s + 0.330·17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 312 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.250 - 0.968i)\, \overline{\Lambda}(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 312 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & (0.250 - 0.968i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(2)\) |
\(\approx\) |
\(0.7233917465\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.7233917465\) |
\(L(\frac{5}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (2.81 + 0.274i)T \) |
| 3 | \( 1 - 3iT \) |
| 13 | \( 1 + (-46.8 + 1.83i)T \) |
good | 5 | \( 1 + 8.71T + 125T^{2} \) |
| 7 | \( 1 + 16.6iT - 343T^{2} \) |
| 11 | \( 1 + 35.9T + 1.33e3T^{2} \) |
| 17 | \( 1 - 23.1T + 4.91e3T^{2} \) |
| 19 | \( 1 - 30.2T + 6.85e3T^{2} \) |
| 23 | \( 1 - 72.9T + 1.21e4T^{2} \) |
| 29 | \( 1 - 119. iT - 2.43e4T^{2} \) |
| 31 | \( 1 - 96.3iT - 2.97e4T^{2} \) |
| 37 | \( 1 + 33.6T + 5.06e4T^{2} \) |
| 41 | \( 1 + 60.2iT - 6.89e4T^{2} \) |
| 43 | \( 1 + 6.93iT - 7.95e4T^{2} \) |
| 47 | \( 1 - 452. iT - 1.03e5T^{2} \) |
| 53 | \( 1 - 308. iT - 1.48e5T^{2} \) |
| 59 | \( 1 - 92.9T + 2.05e5T^{2} \) |
| 61 | \( 1 - 538. iT - 2.26e5T^{2} \) |
| 67 | \( 1 - 484.T + 3.00e5T^{2} \) |
| 71 | \( 1 - 447. iT - 3.57e5T^{2} \) |
| 73 | \( 1 - 763. iT - 3.89e5T^{2} \) |
| 79 | \( 1 - 354.T + 4.93e5T^{2} \) |
| 83 | \( 1 + 232.T + 5.71e5T^{2} \) |
| 89 | \( 1 - 1.31e3iT - 7.04e5T^{2} \) |
| 97 | \( 1 - 1.33e3iT - 9.12e5T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.95673467676045585229285284442, −10.66719278581220763827302905339, −9.636860969251879299106716987755, −8.562922349116070354793611043013, −7.79378910709490481440840609221, −6.95264114034795948551947459807, −5.53211853719303259558683578484, −4.01297662320083833710811422273, −3.01155174402872136269377904080, −0.998805556098292689700177974441,
0.46285098012106068700911004779, 2.08742294182894605063830047604, 3.34045602431170568087551565846, 5.37311149789673425737128064756, 6.32312730891420545831423894117, 7.51306319717005783362337957816, 8.157867656215473669372942217397, 8.914033128086512888030796725492, 10.05274612496076816654442212425, 11.18122013690879023038178561089