L(s) = 1 | + (−2.81 − 0.274i)2-s + 3i·3-s + (7.84 + 1.54i)4-s − 8.71·5-s + (0.824 − 8.44i)6-s − 16.6i·7-s + (−21.6 − 6.51i)8-s − 9·9-s + (24.5 + 2.39i)10-s − 35.9·11-s + (−4.64 + 23.5i)12-s + (46.8 − 1.83i)13-s + (−4.58 + 46.9i)14-s − 26.1i·15-s + (59.2 + 24.2i)16-s + 23.1·17-s + ⋯ |
L(s) = 1 | + (−0.995 − 0.0971i)2-s + 0.577i·3-s + (0.981 + 0.193i)4-s − 0.779·5-s + (0.0560 − 0.574i)6-s − 0.899i·7-s + (−0.957 − 0.287i)8-s − 0.333·9-s + (0.775 + 0.0757i)10-s − 0.985·11-s + (−0.111 + 0.566i)12-s + (0.999 − 0.0392i)13-s + (−0.0874 + 0.895i)14-s − 0.450i·15-s + (0.925 + 0.379i)16-s + 0.330·17-s + ⋯ |
Λ(s)=(=(312s/2ΓC(s)L(s)(0.250−0.968i)Λ(4−s)
Λ(s)=(=(312s/2ΓC(s+3/2)L(s)(0.250−0.968i)Λ(1−s)
Degree: |
2 |
Conductor: |
312
= 23⋅3⋅13
|
Sign: |
0.250−0.968i
|
Analytic conductor: |
18.4085 |
Root analytic conductor: |
4.29052 |
Motivic weight: |
3 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ312(181,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 312, ( :3/2), 0.250−0.968i)
|
Particular Values
L(2) |
≈ |
0.7233917465 |
L(21) |
≈ |
0.7233917465 |
L(25) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+(2.81+0.274i)T |
| 3 | 1−3iT |
| 13 | 1+(−46.8+1.83i)T |
good | 5 | 1+8.71T+125T2 |
| 7 | 1+16.6iT−343T2 |
| 11 | 1+35.9T+1.33e3T2 |
| 17 | 1−23.1T+4.91e3T2 |
| 19 | 1−30.2T+6.85e3T2 |
| 23 | 1−72.9T+1.21e4T2 |
| 29 | 1−119.iT−2.43e4T2 |
| 31 | 1−96.3iT−2.97e4T2 |
| 37 | 1+33.6T+5.06e4T2 |
| 41 | 1+60.2iT−6.89e4T2 |
| 43 | 1+6.93iT−7.95e4T2 |
| 47 | 1−452.iT−1.03e5T2 |
| 53 | 1−308.iT−1.48e5T2 |
| 59 | 1−92.9T+2.05e5T2 |
| 61 | 1−538.iT−2.26e5T2 |
| 67 | 1−484.T+3.00e5T2 |
| 71 | 1−447.iT−3.57e5T2 |
| 73 | 1−763.iT−3.89e5T2 |
| 79 | 1−354.T+4.93e5T2 |
| 83 | 1+232.T+5.71e5T2 |
| 89 | 1−1.31e3iT−7.04e5T2 |
| 97 | 1−1.33e3iT−9.12e5T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−10.95673467676045585229285284442, −10.66719278581220763827302905339, −9.636860969251879299106716987755, −8.562922349116070354793611043013, −7.79378910709490481440840609221, −6.95264114034795948551947459807, −5.53211853719303259558683578484, −4.01297662320083833710811422273, −3.01155174402872136269377904080, −0.998805556098292689700177974441,
0.46285098012106068700911004779, 2.08742294182894605063830047604, 3.34045602431170568087551565846, 5.37311149789673425737128064756, 6.32312730891420545831423894117, 7.51306319717005783362337957816, 8.157867656215473669372942217397, 8.914033128086512888030796725492, 10.05274612496076816654442212425, 11.18122013690879023038178561089