L(s) = 1 | + (1.61 + 2.32i)2-s − 3i·3-s + (−2.78 + 7.50i)4-s − 1.96·5-s + (6.96 − 4.84i)6-s + 7.12i·7-s + (−21.9 + 5.66i)8-s − 9·9-s + (−3.16 − 4.55i)10-s + 39.6·11-s + (22.5 + 8.34i)12-s + (−14.7 + 44.4i)13-s + (−16.5 + 11.5i)14-s + 5.88i·15-s + (−48.5 − 41.7i)16-s − 20.3·17-s + ⋯ |
L(s) = 1 | + (0.571 + 0.820i)2-s − 0.577i·3-s + (−0.347 + 0.937i)4-s − 0.175·5-s + (0.473 − 0.329i)6-s + 0.384i·7-s + (−0.968 + 0.250i)8-s − 0.333·9-s + (−0.100 − 0.144i)10-s + 1.08·11-s + (0.541 + 0.200i)12-s + (−0.315 + 0.948i)13-s + (−0.315 + 0.219i)14-s + 0.101i·15-s + (−0.758 − 0.651i)16-s − 0.291·17-s + ⋯ |
Λ(s)=(=(312s/2ΓC(s)L(s)(−0.997−0.0679i)Λ(4−s)
Λ(s)=(=(312s/2ΓC(s+3/2)L(s)(−0.997−0.0679i)Λ(1−s)
Degree: |
2 |
Conductor: |
312
= 23⋅3⋅13
|
Sign: |
−0.997−0.0679i
|
Analytic conductor: |
18.4085 |
Root analytic conductor: |
4.29052 |
Motivic weight: |
3 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ312(181,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 312, ( :3/2), −0.997−0.0679i)
|
Particular Values
L(2) |
≈ |
1.175106443 |
L(21) |
≈ |
1.175106443 |
L(25) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+(−1.61−2.32i)T |
| 3 | 1+3iT |
| 13 | 1+(14.7−44.4i)T |
good | 5 | 1+1.96T+125T2 |
| 7 | 1−7.12iT−343T2 |
| 11 | 1−39.6T+1.33e3T2 |
| 17 | 1+20.3T+4.91e3T2 |
| 19 | 1+78.7T+6.85e3T2 |
| 23 | 1+108.T+1.21e4T2 |
| 29 | 1−306.iT−2.43e4T2 |
| 31 | 1+122.iT−2.97e4T2 |
| 37 | 1+238.T+5.06e4T2 |
| 41 | 1+113.iT−6.89e4T2 |
| 43 | 1−443.iT−7.95e4T2 |
| 47 | 1−435.iT−1.03e5T2 |
| 53 | 1+496.iT−1.48e5T2 |
| 59 | 1+868.T+2.05e5T2 |
| 61 | 1−355.iT−2.26e5T2 |
| 67 | 1−792.T+3.00e5T2 |
| 71 | 1−208.iT−3.57e5T2 |
| 73 | 1+1.07e3iT−3.89e5T2 |
| 79 | 1−1.22e3T+4.93e5T2 |
| 83 | 1−701.T+5.71e5T2 |
| 89 | 1+14.2iT−7.04e5T2 |
| 97 | 1+1.16e3iT−9.12e5T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−12.05802638365221263600142893425, −11.13384368619659554796744603825, −9.413195573944169466435412668532, −8.708617659263362759983871252433, −7.68590293090423684488669695757, −6.68623001322530630681395252530, −6.07383643613112503615604336790, −4.69426634241820662588612337163, −3.64471917014976640182340188897, −2.00296231675693894002412812008,
0.33717267142077076445820872170, 2.12682803628114191530352427063, 3.65618098516810368778752284135, 4.28443628418535902414698655966, 5.55347705743131396151837565521, 6.56552204624418173304374340444, 8.121812880230532038973822059267, 9.220448911541678364082195969229, 10.11716548853408313609085389302, 10.73847266888425848734763714460