L(s) = 1 | + (−1.61 − 2.32i)2-s − 3i·3-s + (−2.78 + 7.50i)4-s + 1.96·5-s + (−6.96 + 4.84i)6-s − 7.12i·7-s + (21.9 − 5.66i)8-s − 9·9-s + (−3.16 − 4.55i)10-s − 39.6·11-s + (22.5 + 8.34i)12-s + (14.7 + 44.4i)13-s + (−16.5 + 11.5i)14-s − 5.88i·15-s + (−48.5 − 41.7i)16-s − 20.3·17-s + ⋯ |
L(s) = 1 | + (−0.571 − 0.820i)2-s − 0.577i·3-s + (−0.347 + 0.937i)4-s + 0.175·5-s + (−0.473 + 0.329i)6-s − 0.384i·7-s + (0.968 − 0.250i)8-s − 0.333·9-s + (−0.100 − 0.144i)10-s − 1.08·11-s + (0.541 + 0.200i)12-s + (0.315 + 0.948i)13-s + (−0.315 + 0.219i)14-s − 0.101i·15-s + (−0.758 − 0.651i)16-s − 0.291·17-s + ⋯ |
Λ(s)=(=(312s/2ΓC(s)L(s)(0.839−0.542i)Λ(4−s)
Λ(s)=(=(312s/2ΓC(s+3/2)L(s)(0.839−0.542i)Λ(1−s)
Degree: |
2 |
Conductor: |
312
= 23⋅3⋅13
|
Sign: |
0.839−0.542i
|
Analytic conductor: |
18.4085 |
Root analytic conductor: |
4.29052 |
Motivic weight: |
3 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ312(181,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 312, ( :3/2), 0.839−0.542i)
|
Particular Values
L(2) |
≈ |
0.7133178946 |
L(21) |
≈ |
0.7133178946 |
L(25) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+(1.61+2.32i)T |
| 3 | 1+3iT |
| 13 | 1+(−14.7−44.4i)T |
good | 5 | 1−1.96T+125T2 |
| 7 | 1+7.12iT−343T2 |
| 11 | 1+39.6T+1.33e3T2 |
| 17 | 1+20.3T+4.91e3T2 |
| 19 | 1−78.7T+6.85e3T2 |
| 23 | 1+108.T+1.21e4T2 |
| 29 | 1−306.iT−2.43e4T2 |
| 31 | 1−122.iT−2.97e4T2 |
| 37 | 1−238.T+5.06e4T2 |
| 41 | 1−113.iT−6.89e4T2 |
| 43 | 1−443.iT−7.95e4T2 |
| 47 | 1+435.iT−1.03e5T2 |
| 53 | 1+496.iT−1.48e5T2 |
| 59 | 1−868.T+2.05e5T2 |
| 61 | 1−355.iT−2.26e5T2 |
| 67 | 1+792.T+3.00e5T2 |
| 71 | 1+208.iT−3.57e5T2 |
| 73 | 1−1.07e3iT−3.89e5T2 |
| 79 | 1−1.22e3T+4.93e5T2 |
| 83 | 1+701.T+5.71e5T2 |
| 89 | 1−14.2iT−7.04e5T2 |
| 97 | 1−1.16e3iT−9.12e5T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−11.35065486631765691353245851847, −10.42084915929280399317000585529, −9.573439856570184047806313444596, −8.519536800097635106584575841743, −7.66796210710607373256317197129, −6.75670391082269502393012231951, −5.22171390866517861031667428914, −3.81935324596234666655728866274, −2.49965439163537564670914243944, −1.28581123225543430000125773896,
0.33590818090604311821022457188, 2.41965390304137052393937754127, 4.19597074195738092520929621361, 5.54360285678784686736392194274, 5.94995907545602359554610734230, 7.63464408454512468432426796427, 8.140416280802092304621334641135, 9.348613688996158780676919053423, 10.02212181201847391274902334783, 10.79941850948790617531010424126