L(s) = 1 | + (0.457 − 2.79i)2-s + 3i·3-s + (−7.58 − 2.55i)4-s − 4.56·5-s + (8.37 + 1.37i)6-s − 23.0i·7-s + (−10.5 + 19.9i)8-s − 9·9-s + (−2.08 + 12.7i)10-s + 9.02·11-s + (7.65 − 22.7i)12-s + (−3.63 + 46.7i)13-s + (−64.1 − 10.5i)14-s − 13.7i·15-s + (50.9 + 38.7i)16-s − 59.4·17-s + ⋯ |
L(s) = 1 | + (0.161 − 0.986i)2-s + 0.577i·3-s + (−0.947 − 0.319i)4-s − 0.408·5-s + (0.569 + 0.0933i)6-s − 1.24i·7-s + (−0.468 + 0.883i)8-s − 0.333·9-s + (−0.0660 + 0.403i)10-s + 0.247·11-s + (0.184 − 0.547i)12-s + (−0.0776 + 0.996i)13-s + (−1.22 − 0.200i)14-s − 0.235i·15-s + (0.796 + 0.604i)16-s − 0.847·17-s + ⋯ |
Λ(s)=(=(312s/2ΓC(s)L(s)(0.535−0.844i)Λ(4−s)
Λ(s)=(=(312s/2ΓC(s+3/2)L(s)(0.535−0.844i)Λ(1−s)
Degree: |
2 |
Conductor: |
312
= 23⋅3⋅13
|
Sign: |
0.535−0.844i
|
Analytic conductor: |
18.4085 |
Root analytic conductor: |
4.29052 |
Motivic weight: |
3 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ312(181,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 312, ( :3/2), 0.535−0.844i)
|
Particular Values
L(2) |
≈ |
0.7884617353 |
L(21) |
≈ |
0.7884617353 |
L(25) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+(−0.457+2.79i)T |
| 3 | 1−3iT |
| 13 | 1+(3.63−46.7i)T |
good | 5 | 1+4.56T+125T2 |
| 7 | 1+23.0iT−343T2 |
| 11 | 1−9.02T+1.33e3T2 |
| 17 | 1+59.4T+4.91e3T2 |
| 19 | 1−27.0T+6.85e3T2 |
| 23 | 1−35.7T+1.21e4T2 |
| 29 | 1−142.iT−2.43e4T2 |
| 31 | 1−303.iT−2.97e4T2 |
| 37 | 1−241.T+5.06e4T2 |
| 41 | 1−280.iT−6.89e4T2 |
| 43 | 1−198.iT−7.95e4T2 |
| 47 | 1−319.iT−1.03e5T2 |
| 53 | 1−531.iT−1.48e5T2 |
| 59 | 1+378.T+2.05e5T2 |
| 61 | 1+878.iT−2.26e5T2 |
| 67 | 1+247.T+3.00e5T2 |
| 71 | 1−182.iT−3.57e5T2 |
| 73 | 1+815.iT−3.89e5T2 |
| 79 | 1+817.T+4.93e5T2 |
| 83 | 1−246.T+5.71e5T2 |
| 89 | 1+355.iT−7.04e5T2 |
| 97 | 1+506.iT−9.12e5T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−11.18678390501496189503485160599, −10.70378961851344839449185072317, −9.654055871443995520430688663705, −8.945505394839683755568505899850, −7.70344500720104426749594598967, −6.44282991343427040395004563343, −4.77473899967453452036849147174, −4.18733610341377570301551111224, −3.13143757850359459782754126303, −1.35130159795524443482961667975,
0.29403411211544446040597298569, 2.52109064090467456732105108831, 4.02826198240198967874517905953, 5.45332511841025867941507452630, 6.07981520439377211280172808282, 7.27345899462893927856996352862, 8.108453037323371702892475800057, 8.865296127476234615376738363802, 9.837425290656354022334400689430, 11.44178039231807409559943673376