Properties

Label 2-312-104.77-c3-0-14
Degree 22
Conductor 312312
Sign 0.398+0.917i-0.398 + 0.917i
Analytic cond. 18.408518.4085
Root an. cond. 4.290524.29052
Motivic weight 33
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank 00

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (−0.457 + 2.79i)2-s + 3i·3-s + (−7.58 − 2.55i)4-s + 4.56·5-s + (−8.37 − 1.37i)6-s + 23.0i·7-s + (10.5 − 19.9i)8-s − 9·9-s + (−2.08 + 12.7i)10-s − 9.02·11-s + (7.65 − 22.7i)12-s + (3.63 + 46.7i)13-s + (−64.1 − 10.5i)14-s + 13.7i·15-s + (50.9 + 38.7i)16-s − 59.4·17-s + ⋯
L(s)  = 1  + (−0.161 + 0.986i)2-s + 0.577i·3-s + (−0.947 − 0.319i)4-s + 0.408·5-s + (−0.569 − 0.0933i)6-s + 1.24i·7-s + (0.468 − 0.883i)8-s − 0.333·9-s + (−0.0660 + 0.403i)10-s − 0.247·11-s + (0.184 − 0.547i)12-s + (0.0776 + 0.996i)13-s + (−1.22 − 0.200i)14-s + 0.235i·15-s + (0.796 + 0.604i)16-s − 0.847·17-s + ⋯

Functional equation

Λ(s)=(312s/2ΓC(s)L(s)=((0.398+0.917i)Λ(4s)\begin{aligned}\Lambda(s)=\mathstrut & 312 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.398 + 0.917i)\, \overline{\Lambda}(4-s) \end{aligned}
Λ(s)=(312s/2ΓC(s+3/2)L(s)=((0.398+0.917i)Λ(1s)\begin{aligned}\Lambda(s)=\mathstrut & 312 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & (-0.398 + 0.917i)\, \overline{\Lambda}(1-s) \end{aligned}

Invariants

Degree: 22
Conductor: 312312    =    233132^{3} \cdot 3 \cdot 13
Sign: 0.398+0.917i-0.398 + 0.917i
Analytic conductor: 18.408518.4085
Root analytic conductor: 4.290524.29052
Motivic weight: 33
Rational: no
Arithmetic: yes
Character: χ312(181,)\chi_{312} (181, \cdot )
Primitive: yes
Self-dual: no
Analytic rank: 00
Selberg data: (2, 312, ( :3/2), 0.398+0.917i)(2,\ 312,\ (\ :3/2),\ -0.398 + 0.917i)

Particular Values

L(2)L(2) \approx 0.71301694230.7130169423
L(12)L(\frac12) \approx 0.71301694230.7130169423
L(52)L(\frac{5}{2}) not available
L(1)L(1) not available

Euler product

   L(s)=pFp(ps)1L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1}
ppFp(T)F_p(T)
bad2 1+(0.4572.79i)T 1 + (0.457 - 2.79i)T
3 13iT 1 - 3iT
13 1+(3.6346.7i)T 1 + (-3.63 - 46.7i)T
good5 14.56T+125T2 1 - 4.56T + 125T^{2}
7 123.0iT343T2 1 - 23.0iT - 343T^{2}
11 1+9.02T+1.33e3T2 1 + 9.02T + 1.33e3T^{2}
17 1+59.4T+4.91e3T2 1 + 59.4T + 4.91e3T^{2}
19 1+27.0T+6.85e3T2 1 + 27.0T + 6.85e3T^{2}
23 135.7T+1.21e4T2 1 - 35.7T + 1.21e4T^{2}
29 1142.iT2.43e4T2 1 - 142. iT - 2.43e4T^{2}
31 1+303.iT2.97e4T2 1 + 303. iT - 2.97e4T^{2}
37 1+241.T+5.06e4T2 1 + 241.T + 5.06e4T^{2}
41 1+280.iT6.89e4T2 1 + 280. iT - 6.89e4T^{2}
43 1198.iT7.95e4T2 1 - 198. iT - 7.95e4T^{2}
47 1+319.iT1.03e5T2 1 + 319. iT - 1.03e5T^{2}
53 1531.iT1.48e5T2 1 - 531. iT - 1.48e5T^{2}
59 1378.T+2.05e5T2 1 - 378.T + 2.05e5T^{2}
61 1+878.iT2.26e5T2 1 + 878. iT - 2.26e5T^{2}
67 1247.T+3.00e5T2 1 - 247.T + 3.00e5T^{2}
71 1+182.iT3.57e5T2 1 + 182. iT - 3.57e5T^{2}
73 1815.iT3.89e5T2 1 - 815. iT - 3.89e5T^{2}
79 1+817.T+4.93e5T2 1 + 817.T + 4.93e5T^{2}
83 1+246.T+5.71e5T2 1 + 246.T + 5.71e5T^{2}
89 1355.iT7.04e5T2 1 - 355. iT - 7.04e5T^{2}
97 1506.iT9.12e5T2 1 - 506. iT - 9.12e5T^{2}
show more
show less
   L(s)=p j=12(1αj,pps)1L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}

Imaginary part of the first few zeros on the critical line

−11.86341128190643033931918963455, −10.77643384248045134944369072696, −9.595513846489019043627249355772, −9.066658977127065715075133798932, −8.286208200466808726567463284906, −6.90302017674434340206138071117, −5.93937850517197410566779460718, −5.14459537211193363452742860209, −3.99379012740446711723007237151, −2.16510616306739711483879608532, 0.27457285293938218534573578656, 1.54344962316151436482886648253, 2.91897548479408206122947278407, 4.16792742517924334939511050684, 5.41409990397762997226500909972, 6.83903987545360642265736894603, 7.87305382654675183100319402881, 8.747109150715055653063470274764, 10.01814345507838914477183589048, 10.55925485277392536937518923627

Graph of the ZZ-function along the critical line