L(s) = 1 | + (−2.73 − 0.722i)2-s − 3i·3-s + (6.95 + 3.95i)4-s − 2.18·5-s + (−2.16 + 8.20i)6-s − 4.02i·7-s + (−16.1 − 15.8i)8-s − 9·9-s + (5.98 + 1.58i)10-s + 8.07·11-s + (11.8 − 20.8i)12-s + (−40.2 + 24.0i)13-s + (−2.91 + 11.0i)14-s + 6.56i·15-s + (32.7 + 54.9i)16-s + 130.·17-s + ⋯ |
L(s) = 1 | + (−0.966 − 0.255i)2-s − 0.577i·3-s + (0.869 + 0.493i)4-s − 0.195·5-s + (−0.147 + 0.558i)6-s − 0.217i·7-s + (−0.714 − 0.699i)8-s − 0.333·9-s + (0.189 + 0.0500i)10-s + 0.221·11-s + (0.285 − 0.501i)12-s + (−0.858 + 0.513i)13-s + (−0.0555 + 0.210i)14-s + 0.113i·15-s + (0.511 + 0.858i)16-s + 1.85·17-s + ⋯ |
Λ(s)=(=(312s/2ΓC(s)L(s)(0.233−0.972i)Λ(4−s)
Λ(s)=(=(312s/2ΓC(s+3/2)L(s)(0.233−0.972i)Λ(1−s)
Degree: |
2 |
Conductor: |
312
= 23⋅3⋅13
|
Sign: |
0.233−0.972i
|
Analytic conductor: |
18.4085 |
Root analytic conductor: |
4.29052 |
Motivic weight: |
3 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ312(181,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 312, ( :3/2), 0.233−0.972i)
|
Particular Values
L(2) |
≈ |
0.5057728755 |
L(21) |
≈ |
0.5057728755 |
L(25) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+(2.73+0.722i)T |
| 3 | 1+3iT |
| 13 | 1+(40.2−24.0i)T |
good | 5 | 1+2.18T+125T2 |
| 7 | 1+4.02iT−343T2 |
| 11 | 1−8.07T+1.33e3T2 |
| 17 | 1−130.T+4.91e3T2 |
| 19 | 1+109.T+6.85e3T2 |
| 23 | 1+77.1T+1.21e4T2 |
| 29 | 1+94.2iT−2.43e4T2 |
| 31 | 1−171.iT−2.97e4T2 |
| 37 | 1+18.4T+5.06e4T2 |
| 41 | 1−345.iT−6.89e4T2 |
| 43 | 1−272.iT−7.95e4T2 |
| 47 | 1+278.iT−1.03e5T2 |
| 53 | 1−443.iT−1.48e5T2 |
| 59 | 1−25.5T+2.05e5T2 |
| 61 | 1−606.iT−2.26e5T2 |
| 67 | 1−583.T+3.00e5T2 |
| 71 | 1−847.iT−3.57e5T2 |
| 73 | 1−1.20e3iT−3.89e5T2 |
| 79 | 1+1.18e3T+4.93e5T2 |
| 83 | 1−932.T+5.71e5T2 |
| 89 | 1+227.iT−7.04e5T2 |
| 97 | 1+710.iT−9.12e5T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−11.55709450742505774821753384316, −10.31310015996130299565043076899, −9.690304628267356136253143475353, −8.471667313436460523285118533573, −7.73999328625144500869022340411, −6.89716958262368666752914537289, −5.82793920420268244745871117088, −4.00805413017369439723361059240, −2.57720979129849741517076338613, −1.27753929219485460173474617584,
0.26507450132968055833835070411, 2.15605884907031145629394991764, 3.63109986874521961763994052248, 5.24577340348514537064626929094, 6.13683384574623218531761082819, 7.49593068611087545293317358230, 8.183992930571683403368302867536, 9.265295010923301934939047069178, 10.04602160904693767532863053039, 10.69383755996300042924077967097