L(s) = 1 | + (−2.73 − 0.722i)2-s − 3i·3-s + (6.95 + 3.95i)4-s − 2.18·5-s + (−2.16 + 8.20i)6-s − 4.02i·7-s + (−16.1 − 15.8i)8-s − 9·9-s + (5.98 + 1.58i)10-s + 8.07·11-s + (11.8 − 20.8i)12-s + (−40.2 + 24.0i)13-s + (−2.91 + 11.0i)14-s + 6.56i·15-s + (32.7 + 54.9i)16-s + 130.·17-s + ⋯ |
L(s) = 1 | + (−0.966 − 0.255i)2-s − 0.577i·3-s + (0.869 + 0.493i)4-s − 0.195·5-s + (−0.147 + 0.558i)6-s − 0.217i·7-s + (−0.714 − 0.699i)8-s − 0.333·9-s + (0.189 + 0.0500i)10-s + 0.221·11-s + (0.285 − 0.501i)12-s + (−0.858 + 0.513i)13-s + (−0.0555 + 0.210i)14-s + 0.113i·15-s + (0.511 + 0.858i)16-s + 1.85·17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 312 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.233 - 0.972i)\, \overline{\Lambda}(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 312 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & (0.233 - 0.972i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(2)\) |
\(\approx\) |
\(0.5057728755\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.5057728755\) |
\(L(\frac{5}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (2.73 + 0.722i)T \) |
| 3 | \( 1 + 3iT \) |
| 13 | \( 1 + (40.2 - 24.0i)T \) |
good | 5 | \( 1 + 2.18T + 125T^{2} \) |
| 7 | \( 1 + 4.02iT - 343T^{2} \) |
| 11 | \( 1 - 8.07T + 1.33e3T^{2} \) |
| 17 | \( 1 - 130.T + 4.91e3T^{2} \) |
| 19 | \( 1 + 109.T + 6.85e3T^{2} \) |
| 23 | \( 1 + 77.1T + 1.21e4T^{2} \) |
| 29 | \( 1 + 94.2iT - 2.43e4T^{2} \) |
| 31 | \( 1 - 171. iT - 2.97e4T^{2} \) |
| 37 | \( 1 + 18.4T + 5.06e4T^{2} \) |
| 41 | \( 1 - 345. iT - 6.89e4T^{2} \) |
| 43 | \( 1 - 272. iT - 7.95e4T^{2} \) |
| 47 | \( 1 + 278. iT - 1.03e5T^{2} \) |
| 53 | \( 1 - 443. iT - 1.48e5T^{2} \) |
| 59 | \( 1 - 25.5T + 2.05e5T^{2} \) |
| 61 | \( 1 - 606. iT - 2.26e5T^{2} \) |
| 67 | \( 1 - 583.T + 3.00e5T^{2} \) |
| 71 | \( 1 - 847. iT - 3.57e5T^{2} \) |
| 73 | \( 1 - 1.20e3iT - 3.89e5T^{2} \) |
| 79 | \( 1 + 1.18e3T + 4.93e5T^{2} \) |
| 83 | \( 1 - 932.T + 5.71e5T^{2} \) |
| 89 | \( 1 + 227. iT - 7.04e5T^{2} \) |
| 97 | \( 1 + 710. iT - 9.12e5T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−11.55709450742505774821753384316, −10.31310015996130299565043076899, −9.690304628267356136253143475353, −8.471667313436460523285118533573, −7.73999328625144500869022340411, −6.89716958262368666752914537289, −5.82793920420268244745871117088, −4.00805413017369439723361059240, −2.57720979129849741517076338613, −1.27753929219485460173474617584,
0.26507450132968055833835070411, 2.15605884907031145629394991764, 3.63109986874521961763994052248, 5.24577340348514537064626929094, 6.13683384574623218531761082819, 7.49593068611087545293317358230, 8.183992930571683403368302867536, 9.265295010923301934939047069178, 10.04602160904693767532863053039, 10.69383755996300042924077967097