L(s) = 1 | + (1.33 + 2.49i)2-s + 3i·3-s + (−4.41 + 6.67i)4-s − 12.3·5-s + (−7.47 + 4.01i)6-s + 26.6i·7-s + (−22.5 − 2.06i)8-s − 9·9-s + (−16.5 − 30.8i)10-s + 33.2·11-s + (−20.0 − 13.2i)12-s + (−46.5 + 5.78i)13-s + (−66.3 + 35.6i)14-s − 37.1i·15-s + (−25.0 − 58.8i)16-s + 16.3·17-s + ⋯ |
L(s) = 1 | + (0.473 + 0.880i)2-s + 0.577i·3-s + (−0.551 + 0.834i)4-s − 1.10·5-s + (−0.508 + 0.273i)6-s + 1.43i·7-s + (−0.995 − 0.0911i)8-s − 0.333·9-s + (−0.523 − 0.974i)10-s + 0.911·11-s + (−0.481 − 0.318i)12-s + (−0.992 + 0.123i)13-s + (−1.26 + 0.680i)14-s − 0.638i·15-s + (−0.391 − 0.920i)16-s + 0.232·17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 312 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.0324 + 0.999i)\, \overline{\Lambda}(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 312 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & (0.0324 + 0.999i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(2)\) |
\(\approx\) |
\(0.6891599119\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.6891599119\) |
\(L(\frac{5}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (-1.33 - 2.49i)T \) |
| 3 | \( 1 - 3iT \) |
| 13 | \( 1 + (46.5 - 5.78i)T \) |
good | 5 | \( 1 + 12.3T + 125T^{2} \) |
| 7 | \( 1 - 26.6iT - 343T^{2} \) |
| 11 | \( 1 - 33.2T + 1.33e3T^{2} \) |
| 17 | \( 1 - 16.3T + 4.91e3T^{2} \) |
| 19 | \( 1 - 43.9T + 6.85e3T^{2} \) |
| 23 | \( 1 - 60.7T + 1.21e4T^{2} \) |
| 29 | \( 1 + 218. iT - 2.43e4T^{2} \) |
| 31 | \( 1 - 12.9iT - 2.97e4T^{2} \) |
| 37 | \( 1 + 295.T + 5.06e4T^{2} \) |
| 41 | \( 1 - 241. iT - 6.89e4T^{2} \) |
| 43 | \( 1 + 290. iT - 7.95e4T^{2} \) |
| 47 | \( 1 - 385. iT - 1.03e5T^{2} \) |
| 53 | \( 1 - 220. iT - 1.48e5T^{2} \) |
| 59 | \( 1 + 310.T + 2.05e5T^{2} \) |
| 61 | \( 1 + 156. iT - 2.26e5T^{2} \) |
| 67 | \( 1 - 586.T + 3.00e5T^{2} \) |
| 71 | \( 1 - 1.14e3iT - 3.57e5T^{2} \) |
| 73 | \( 1 + 792. iT - 3.89e5T^{2} \) |
| 79 | \( 1 + 1.06e3T + 4.93e5T^{2} \) |
| 83 | \( 1 + 1.48e3T + 5.71e5T^{2} \) |
| 89 | \( 1 - 216. iT - 7.04e5T^{2} \) |
| 97 | \( 1 - 789. iT - 9.12e5T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−11.92328611804066835097325241459, −11.51700674808193993123913002935, −9.715523044799194585388695253270, −8.964306702231399949270750136261, −8.122631613894856443413282903959, −7.13353500319341920379108773855, −5.93343731261589068181145456067, −4.96320845965010974710007167497, −3.98368857456383113234570758515, −2.83786875703432138912879938984,
0.22992649872063810860536264111, 1.38493062807427659442948059816, 3.24263538582534763004272469020, 4.05736577885475353062143549469, 5.14914984704579331673185596259, 6.82813291635321989146808063840, 7.44078326485470813252915145961, 8.692346309048661151341420551120, 9.874702260463115788718371121181, 10.78811692370588538774984214877