L(s) = 1 | + (1.33 + 2.49i)2-s + 3i·3-s + (−4.41 + 6.67i)4-s − 12.3·5-s + (−7.47 + 4.01i)6-s + 26.6i·7-s + (−22.5 − 2.06i)8-s − 9·9-s + (−16.5 − 30.8i)10-s + 33.2·11-s + (−20.0 − 13.2i)12-s + (−46.5 + 5.78i)13-s + (−66.3 + 35.6i)14-s − 37.1i·15-s + (−25.0 − 58.8i)16-s + 16.3·17-s + ⋯ |
L(s) = 1 | + (0.473 + 0.880i)2-s + 0.577i·3-s + (−0.551 + 0.834i)4-s − 1.10·5-s + (−0.508 + 0.273i)6-s + 1.43i·7-s + (−0.995 − 0.0911i)8-s − 0.333·9-s + (−0.523 − 0.974i)10-s + 0.911·11-s + (−0.481 − 0.318i)12-s + (−0.992 + 0.123i)13-s + (−1.26 + 0.680i)14-s − 0.638i·15-s + (−0.391 − 0.920i)16-s + 0.232·17-s + ⋯ |
Λ(s)=(=(312s/2ΓC(s)L(s)(0.0324+0.999i)Λ(4−s)
Λ(s)=(=(312s/2ΓC(s+3/2)L(s)(0.0324+0.999i)Λ(1−s)
Degree: |
2 |
Conductor: |
312
= 23⋅3⋅13
|
Sign: |
0.0324+0.999i
|
Analytic conductor: |
18.4085 |
Root analytic conductor: |
4.29052 |
Motivic weight: |
3 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ312(181,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 312, ( :3/2), 0.0324+0.999i)
|
Particular Values
L(2) |
≈ |
0.6891599119 |
L(21) |
≈ |
0.6891599119 |
L(25) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+(−1.33−2.49i)T |
| 3 | 1−3iT |
| 13 | 1+(46.5−5.78i)T |
good | 5 | 1+12.3T+125T2 |
| 7 | 1−26.6iT−343T2 |
| 11 | 1−33.2T+1.33e3T2 |
| 17 | 1−16.3T+4.91e3T2 |
| 19 | 1−43.9T+6.85e3T2 |
| 23 | 1−60.7T+1.21e4T2 |
| 29 | 1+218.iT−2.43e4T2 |
| 31 | 1−12.9iT−2.97e4T2 |
| 37 | 1+295.T+5.06e4T2 |
| 41 | 1−241.iT−6.89e4T2 |
| 43 | 1+290.iT−7.95e4T2 |
| 47 | 1−385.iT−1.03e5T2 |
| 53 | 1−220.iT−1.48e5T2 |
| 59 | 1+310.T+2.05e5T2 |
| 61 | 1+156.iT−2.26e5T2 |
| 67 | 1−586.T+3.00e5T2 |
| 71 | 1−1.14e3iT−3.57e5T2 |
| 73 | 1+792.iT−3.89e5T2 |
| 79 | 1+1.06e3T+4.93e5T2 |
| 83 | 1+1.48e3T+5.71e5T2 |
| 89 | 1−216.iT−7.04e5T2 |
| 97 | 1−789.iT−9.12e5T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−11.92328611804066835097325241459, −11.51700674808193993123913002935, −9.715523044799194585388695253270, −8.964306702231399949270750136261, −8.122631613894856443413282903959, −7.13353500319341920379108773855, −5.93343731261589068181145456067, −4.96320845965010974710007167497, −3.98368857456383113234570758515, −2.83786875703432138912879938984,
0.22992649872063810860536264111, 1.38493062807427659442948059816, 3.24263538582534763004272469020, 4.05736577885475353062143549469, 5.14914984704579331673185596259, 6.82813291635321989146808063840, 7.44078326485470813252915145961, 8.692346309048661151341420551120, 9.874702260463115788718371121181, 10.78811692370588538774984214877