L(s) = 1 | + (−2.32 − 1.60i)2-s − 3i·3-s + (2.83 + 7.47i)4-s + 6.73·5-s + (−4.81 + 6.98i)6-s + 30.2i·7-s + (5.40 − 21.9i)8-s − 9·9-s + (−15.6 − 10.8i)10-s + 17.0·11-s + (22.4 − 8.51i)12-s + (28.4 + 37.2i)13-s + (48.6 − 70.4i)14-s − 20.1i·15-s + (−47.8 + 42.4i)16-s − 138.·17-s + ⋯ |
L(s) = 1 | + (−0.823 − 0.567i)2-s − 0.577i·3-s + (0.354 + 0.934i)4-s + 0.602·5-s + (−0.327 + 0.475i)6-s + 1.63i·7-s + (0.238 − 0.971i)8-s − 0.333·9-s + (−0.495 − 0.341i)10-s + 0.468·11-s + (0.539 − 0.204i)12-s + (0.606 + 0.795i)13-s + (0.928 − 1.34i)14-s − 0.347i·15-s + (−0.748 + 0.663i)16-s − 1.96·17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 312 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.399 - 0.916i)\, \overline{\Lambda}(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 312 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & (-0.399 - 0.916i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(2)\) |
\(\approx\) |
\(0.4701415910\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.4701415910\) |
\(L(\frac{5}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (2.32 + 1.60i)T \) |
| 3 | \( 1 + 3iT \) |
| 13 | \( 1 + (-28.4 - 37.2i)T \) |
good | 5 | \( 1 - 6.73T + 125T^{2} \) |
| 7 | \( 1 - 30.2iT - 343T^{2} \) |
| 11 | \( 1 - 17.0T + 1.33e3T^{2} \) |
| 17 | \( 1 + 138.T + 4.91e3T^{2} \) |
| 19 | \( 1 + 72.5T + 6.85e3T^{2} \) |
| 23 | \( 1 + 90.4T + 1.21e4T^{2} \) |
| 29 | \( 1 + 265. iT - 2.43e4T^{2} \) |
| 31 | \( 1 + 37.6iT - 2.97e4T^{2} \) |
| 37 | \( 1 + 274.T + 5.06e4T^{2} \) |
| 41 | \( 1 - 70.0iT - 6.89e4T^{2} \) |
| 43 | \( 1 + 273. iT - 7.95e4T^{2} \) |
| 47 | \( 1 - 419. iT - 1.03e5T^{2} \) |
| 53 | \( 1 - 426. iT - 1.48e5T^{2} \) |
| 59 | \( 1 + 162.T + 2.05e5T^{2} \) |
| 61 | \( 1 - 629. iT - 2.26e5T^{2} \) |
| 67 | \( 1 - 180.T + 3.00e5T^{2} \) |
| 71 | \( 1 + 690. iT - 3.57e5T^{2} \) |
| 73 | \( 1 + 63.7iT - 3.89e5T^{2} \) |
| 79 | \( 1 - 27.2T + 4.93e5T^{2} \) |
| 83 | \( 1 - 1.09e3T + 5.71e5T^{2} \) |
| 89 | \( 1 - 1.26e3iT - 7.04e5T^{2} \) |
| 97 | \( 1 - 580. iT - 9.12e5T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−11.66546009052174832122447032299, −10.68338861840674003490675657339, −9.297347039596442938961608800981, −8.966015042821321267387107723453, −8.070748946384714455117533109128, −6.55495783560418444990377119623, −6.05971802256525659347150118444, −4.18530655723606770343676873690, −2.35671334810114944794946861767, −1.91056232001491363005832838818,
0.20877153900720032172683168041, 1.78273431053852773053469524239, 3.80069290010843514383506780625, 4.96831484530880782434563315883, 6.31678301007848125818037689269, 6.97307909955135056042237750966, 8.248635084910105236312057342725, 9.034915681055426192359350825605, 10.12488737669841436052839503809, 10.60728232013908109546068886904