L(s) = 1 | + (−2.32 − 1.60i)2-s − 3i·3-s + (2.83 + 7.47i)4-s + 6.73·5-s + (−4.81 + 6.98i)6-s + 30.2i·7-s + (5.40 − 21.9i)8-s − 9·9-s + (−15.6 − 10.8i)10-s + 17.0·11-s + (22.4 − 8.51i)12-s + (28.4 + 37.2i)13-s + (48.6 − 70.4i)14-s − 20.1i·15-s + (−47.8 + 42.4i)16-s − 138.·17-s + ⋯ |
L(s) = 1 | + (−0.823 − 0.567i)2-s − 0.577i·3-s + (0.354 + 0.934i)4-s + 0.602·5-s + (−0.327 + 0.475i)6-s + 1.63i·7-s + (0.238 − 0.971i)8-s − 0.333·9-s + (−0.495 − 0.341i)10-s + 0.468·11-s + (0.539 − 0.204i)12-s + (0.606 + 0.795i)13-s + (0.928 − 1.34i)14-s − 0.347i·15-s + (−0.748 + 0.663i)16-s − 1.96·17-s + ⋯ |
Λ(s)=(=(312s/2ΓC(s)L(s)(−0.399−0.916i)Λ(4−s)
Λ(s)=(=(312s/2ΓC(s+3/2)L(s)(−0.399−0.916i)Λ(1−s)
Degree: |
2 |
Conductor: |
312
= 23⋅3⋅13
|
Sign: |
−0.399−0.916i
|
Analytic conductor: |
18.4085 |
Root analytic conductor: |
4.29052 |
Motivic weight: |
3 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ312(181,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 312, ( :3/2), −0.399−0.916i)
|
Particular Values
L(2) |
≈ |
0.4701415910 |
L(21) |
≈ |
0.4701415910 |
L(25) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+(2.32+1.60i)T |
| 3 | 1+3iT |
| 13 | 1+(−28.4−37.2i)T |
good | 5 | 1−6.73T+125T2 |
| 7 | 1−30.2iT−343T2 |
| 11 | 1−17.0T+1.33e3T2 |
| 17 | 1+138.T+4.91e3T2 |
| 19 | 1+72.5T+6.85e3T2 |
| 23 | 1+90.4T+1.21e4T2 |
| 29 | 1+265.iT−2.43e4T2 |
| 31 | 1+37.6iT−2.97e4T2 |
| 37 | 1+274.T+5.06e4T2 |
| 41 | 1−70.0iT−6.89e4T2 |
| 43 | 1+273.iT−7.95e4T2 |
| 47 | 1−419.iT−1.03e5T2 |
| 53 | 1−426.iT−1.48e5T2 |
| 59 | 1+162.T+2.05e5T2 |
| 61 | 1−629.iT−2.26e5T2 |
| 67 | 1−180.T+3.00e5T2 |
| 71 | 1+690.iT−3.57e5T2 |
| 73 | 1+63.7iT−3.89e5T2 |
| 79 | 1−27.2T+4.93e5T2 |
| 83 | 1−1.09e3T+5.71e5T2 |
| 89 | 1−1.26e3iT−7.04e5T2 |
| 97 | 1−580.iT−9.12e5T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−11.66546009052174832122447032299, −10.68338861840674003490675657339, −9.297347039596442938961608800981, −8.966015042821321267387107723453, −8.070748946384714455117533109128, −6.55495783560418444990377119623, −6.05971802256525659347150118444, −4.18530655723606770343676873690, −2.35671334810114944794946861767, −1.91056232001491363005832838818,
0.20877153900720032172683168041, 1.78273431053852773053469524239, 3.80069290010843514383506780625, 4.96831484530880782434563315883, 6.31678301007848125818037689269, 6.97307909955135056042237750966, 8.248635084910105236312057342725, 9.034915681055426192359350825605, 10.12488737669841436052839503809, 10.60728232013908109546068886904