L(s) = 1 | + (−1.25 + 0.648i)2-s + (0.5 + 0.866i)3-s + (1.15 − 1.63i)4-s + (0.513 − 0.513i)5-s + (−1.19 − 0.764i)6-s + (1.43 − 0.383i)7-s + (−0.399 + 2.80i)8-s + (−0.499 + 0.866i)9-s + (−0.312 + 0.977i)10-s + (1.43 + 0.383i)11-s + (1.99 + 0.188i)12-s + (0.967 − 3.47i)13-s + (−1.54 + 1.40i)14-s + (0.700 + 0.187i)15-s + (−1.31 − 3.77i)16-s + (1.08 + 0.628i)17-s + ⋯ |
L(s) = 1 | + (−0.888 + 0.458i)2-s + (0.288 + 0.499i)3-s + (0.579 − 0.815i)4-s + (0.229 − 0.229i)5-s + (−0.485 − 0.311i)6-s + (0.540 − 0.144i)7-s + (−0.141 + 0.989i)8-s + (−0.166 + 0.288i)9-s + (−0.0986 + 0.309i)10-s + (0.431 + 0.115i)11-s + (0.574 + 0.0544i)12-s + (0.268 − 0.963i)13-s + (−0.414 + 0.376i)14-s + (0.180 + 0.0484i)15-s + (−0.328 − 0.944i)16-s + (0.263 + 0.152i)17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 312 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.782 - 0.623i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 312 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.782 - 0.623i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.03612 + 0.362223i\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.03612 + 0.362223i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (1.25 - 0.648i)T \) |
| 3 | \( 1 + (-0.5 - 0.866i)T \) |
| 13 | \( 1 + (-0.967 + 3.47i)T \) |
good | 5 | \( 1 + (-0.513 + 0.513i)T - 5iT^{2} \) |
| 7 | \( 1 + (-1.43 + 0.383i)T + (6.06 - 3.5i)T^{2} \) |
| 11 | \( 1 + (-1.43 - 0.383i)T + (9.52 + 5.5i)T^{2} \) |
| 17 | \( 1 + (-1.08 - 0.628i)T + (8.5 + 14.7i)T^{2} \) |
| 19 | \( 1 + (-6.19 + 1.65i)T + (16.4 - 9.5i)T^{2} \) |
| 23 | \( 1 + (-1.68 - 2.92i)T + (-11.5 + 19.9i)T^{2} \) |
| 29 | \( 1 + (5.98 - 3.45i)T + (14.5 - 25.1i)T^{2} \) |
| 31 | \( 1 + (1.65 - 1.65i)T - 31iT^{2} \) |
| 37 | \( 1 + (-0.944 + 3.52i)T + (-32.0 - 18.5i)T^{2} \) |
| 41 | \( 1 + (-0.503 + 1.87i)T + (-35.5 - 20.5i)T^{2} \) |
| 43 | \( 1 + (-7.93 - 4.57i)T + (21.5 + 37.2i)T^{2} \) |
| 47 | \( 1 + (-2.96 - 2.96i)T + 47iT^{2} \) |
| 53 | \( 1 + 0.513iT - 53T^{2} \) |
| 59 | \( 1 + (3.60 + 13.4i)T + (-51.0 + 29.5i)T^{2} \) |
| 61 | \( 1 + (12.2 + 7.05i)T + (30.5 + 52.8i)T^{2} \) |
| 67 | \( 1 + (-1.88 + 7.02i)T + (-58.0 - 33.5i)T^{2} \) |
| 71 | \( 1 + (0.979 + 3.65i)T + (-61.4 + 35.5i)T^{2} \) |
| 73 | \( 1 + (4.42 - 4.42i)T - 73iT^{2} \) |
| 79 | \( 1 - 3.24iT - 79T^{2} \) |
| 83 | \( 1 + (2.89 + 2.89i)T + 83iT^{2} \) |
| 89 | \( 1 + (2.05 + 0.549i)T + (77.0 + 44.5i)T^{2} \) |
| 97 | \( 1 + (-1.09 + 0.293i)T + (84.0 - 48.5i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−11.27633161385054154685511517571, −10.81224293651709282925031392305, −9.532265223023147080505988127261, −9.192211516167843138139586049279, −7.942843742223589738641197550148, −7.32315131743573872282170151535, −5.79026848630067647064921172215, −5.02614269796283081785570717976, −3.26485363398119774022837984080, −1.42406287878626566320581594214,
1.38864710163147980958564630682, 2.65760335570390144583779912068, 4.06674770660443090655884790171, 5.92995996784412337073278152854, 7.04396251844087670379281490245, 7.84018871703869960179242876710, 8.865146577119896054589544864397, 9.548753708295886929858281125147, 10.64248472389579510135488634222, 11.67452898365801309008724554244