L(s) = 1 | + (−0.526 − 1.31i)2-s + (−0.866 + 0.5i)3-s + (−1.44 + 1.38i)4-s + 0.112·5-s + (1.11 + 0.873i)6-s + (0.0378 + 0.0218i)7-s + (2.57 + 1.16i)8-s + (0.499 − 0.866i)9-s + (−0.0592 − 0.147i)10-s + (−3.10 − 5.37i)11-s + (0.560 − 1.91i)12-s + (−1.35 − 3.34i)13-s + (0.00874 − 0.0612i)14-s + (−0.0973 + 0.0562i)15-s + (0.176 − 3.99i)16-s + (1.70 − 2.95i)17-s + ⋯ |
L(s) = 1 | + (−0.372 − 0.928i)2-s + (−0.499 + 0.288i)3-s + (−0.722 + 0.691i)4-s + 0.0502·5-s + (0.454 + 0.356i)6-s + (0.0143 + 0.00826i)7-s + (0.910 + 0.412i)8-s + (0.166 − 0.288i)9-s + (−0.0187 − 0.0466i)10-s + (−0.935 − 1.62i)11-s + (0.161 − 0.554i)12-s + (−0.375 − 0.926i)13-s + (0.00233 − 0.0163i)14-s + (−0.0251 + 0.0145i)15-s + (0.0440 − 0.999i)16-s + (0.413 − 0.716i)17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 312 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.891 + 0.452i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 312 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.891 + 0.452i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.125371 - 0.524168i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.125371 - 0.524168i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (0.526 + 1.31i)T \) |
| 3 | \( 1 + (0.866 - 0.5i)T \) |
| 13 | \( 1 + (1.35 + 3.34i)T \) |
good | 5 | \( 1 - 0.112T + 5T^{2} \) |
| 7 | \( 1 + (-0.0378 - 0.0218i)T + (3.5 + 6.06i)T^{2} \) |
| 11 | \( 1 + (3.10 + 5.37i)T + (-5.5 + 9.52i)T^{2} \) |
| 17 | \( 1 + (-1.70 + 2.95i)T + (-8.5 - 14.7i)T^{2} \) |
| 19 | \( 1 + (3.27 - 5.66i)T + (-9.5 - 16.4i)T^{2} \) |
| 23 | \( 1 + (2.27 + 3.93i)T + (-11.5 + 19.9i)T^{2} \) |
| 29 | \( 1 + (-5.22 + 3.01i)T + (14.5 - 25.1i)T^{2} \) |
| 31 | \( 1 + 7.66iT - 31T^{2} \) |
| 37 | \( 1 + (-5.07 - 8.78i)T + (-18.5 + 32.0i)T^{2} \) |
| 41 | \( 1 + (-2.01 + 1.16i)T + (20.5 - 35.5i)T^{2} \) |
| 43 | \( 1 + (8.02 + 4.63i)T + (21.5 + 37.2i)T^{2} \) |
| 47 | \( 1 - 6.65iT - 47T^{2} \) |
| 53 | \( 1 + 11.2iT - 53T^{2} \) |
| 59 | \( 1 + (1.11 - 1.92i)T + (-29.5 - 51.0i)T^{2} \) |
| 61 | \( 1 + (-8.56 - 4.94i)T + (30.5 + 52.8i)T^{2} \) |
| 67 | \( 1 + (-2.26 - 3.91i)T + (-33.5 + 58.0i)T^{2} \) |
| 71 | \( 1 + (-2.64 - 1.52i)T + (35.5 + 61.4i)T^{2} \) |
| 73 | \( 1 - 4.71iT - 73T^{2} \) |
| 79 | \( 1 - 8.01T + 79T^{2} \) |
| 83 | \( 1 + 2.86T + 83T^{2} \) |
| 89 | \( 1 + (-3.35 + 1.93i)T + (44.5 - 77.0i)T^{2} \) |
| 97 | \( 1 + (0.971 + 0.560i)T + (48.5 + 84.0i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−11.28994949336477538340309800578, −10.21125474639334071427124768809, −9.944837012642344245183030438326, −8.320936324397969610261022586447, −7.979821637674119541355896036132, −6.10979353208795947038094855920, −5.14795271606072417343205454042, −3.79067698837524359695216255782, −2.61365918781970216787180692625, −0.46218826664749537718749047523,
1.91819902356141475979225941643, 4.40526283734641056082703384922, 5.18121108708642070087461024069, 6.43316872271069209682406107237, 7.20753382204541957182931159018, 8.011975279657189718443616076325, 9.271440898648781034790177108355, 10.05751859295382170122314247252, 10.93047420171707220429753632061, 12.24601334259221896514981812829