L(s) = 1 | + (−1.29 − 0.565i)2-s + (−0.866 + 0.5i)3-s + (1.35 + 1.46i)4-s − 1.25·5-s + (1.40 − 0.157i)6-s + (1.81 + 1.05i)7-s + (−0.932 − 2.67i)8-s + (0.499 − 0.866i)9-s + (1.63 + 0.712i)10-s + (−0.586 − 1.01i)11-s + (−1.91 − 0.590i)12-s + (−2.36 + 2.71i)13-s + (−1.76 − 2.39i)14-s + (1.09 − 0.629i)15-s + (−0.303 + 3.98i)16-s + (−2.24 + 3.89i)17-s + ⋯ |
L(s) = 1 | + (−0.916 − 0.400i)2-s + (−0.499 + 0.288i)3-s + (0.679 + 0.733i)4-s − 0.563·5-s + (0.573 − 0.0644i)6-s + (0.687 + 0.397i)7-s + (−0.329 − 0.944i)8-s + (0.166 − 0.288i)9-s + (0.516 + 0.225i)10-s + (−0.176 − 0.306i)11-s + (−0.551 − 0.170i)12-s + (−0.656 + 0.754i)13-s + (−0.471 − 0.638i)14-s + (0.281 − 0.162i)15-s + (−0.0757 + 0.997i)16-s + (−0.545 + 0.944i)17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 312 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.130 - 0.991i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 312 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.130 - 0.991i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.312859 + 0.356593i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.312859 + 0.356593i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (1.29 + 0.565i)T \) |
| 3 | \( 1 + (0.866 - 0.5i)T \) |
| 13 | \( 1 + (2.36 - 2.71i)T \) |
good | 5 | \( 1 + 1.25T + 5T^{2} \) |
| 7 | \( 1 + (-1.81 - 1.05i)T + (3.5 + 6.06i)T^{2} \) |
| 11 | \( 1 + (0.586 + 1.01i)T + (-5.5 + 9.52i)T^{2} \) |
| 17 | \( 1 + (2.24 - 3.89i)T + (-8.5 - 14.7i)T^{2} \) |
| 19 | \( 1 + (0.575 - 0.997i)T + (-9.5 - 16.4i)T^{2} \) |
| 23 | \( 1 + (-3.69 - 6.40i)T + (-11.5 + 19.9i)T^{2} \) |
| 29 | \( 1 + (3.34 - 1.93i)T + (14.5 - 25.1i)T^{2} \) |
| 31 | \( 1 - 0.682iT - 31T^{2} \) |
| 37 | \( 1 + (-4.79 - 8.31i)T + (-18.5 + 32.0i)T^{2} \) |
| 41 | \( 1 + (6.84 - 3.95i)T + (20.5 - 35.5i)T^{2} \) |
| 43 | \( 1 + (-2.32 - 1.34i)T + (21.5 + 37.2i)T^{2} \) |
| 47 | \( 1 + 3.71iT - 47T^{2} \) |
| 53 | \( 1 - 9.95iT - 53T^{2} \) |
| 59 | \( 1 + (-5.00 + 8.67i)T + (-29.5 - 51.0i)T^{2} \) |
| 61 | \( 1 + (2.93 + 1.69i)T + (30.5 + 52.8i)T^{2} \) |
| 67 | \( 1 + (0.888 + 1.53i)T + (-33.5 + 58.0i)T^{2} \) |
| 71 | \( 1 + (1.05 + 0.609i)T + (35.5 + 61.4i)T^{2} \) |
| 73 | \( 1 + 14.0iT - 73T^{2} \) |
| 79 | \( 1 - 2.73T + 79T^{2} \) |
| 83 | \( 1 - 3.16T + 83T^{2} \) |
| 89 | \( 1 + (-4.52 + 2.61i)T + (44.5 - 77.0i)T^{2} \) |
| 97 | \( 1 + (6.68 + 3.85i)T + (48.5 + 84.0i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−11.53146689531108140667074132266, −11.20286647914438959930510984370, −10.09659281362196009681006814669, −9.166961196408779043470527646855, −8.242101126773153487920895750575, −7.37206447442109013916879072126, −6.19880890699837538288485316466, −4.77029756177973393360547361572, −3.49990534640995310905755639530, −1.77333459638525552949400554683,
0.48342683017226808765302048659, 2.37435434413360577972942951154, 4.55455444644598166870390852420, 5.56068849479225768830799658853, 6.94301580719317400549838736978, 7.52431432618487725490271945498, 8.382865180173611766331516690223, 9.543082125466574488968792496148, 10.58804575595807134450603200645, 11.22265111832590305533005168732