Properties

Label 2-312-1.1-c3-0-9
Degree $2$
Conductor $312$
Sign $-1$
Analytic cond. $18.4085$
Root an. cond. $4.29052$
Motivic weight $3$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 3·3-s − 7.63·5-s + 5.63·7-s + 9·9-s + 34.5·11-s + 13·13-s + 22.8·15-s + 2·17-s − 88.1·19-s − 16.8·21-s − 64·23-s − 66.7·25-s − 27·27-s + 23.7·29-s − 284.·31-s − 103.·33-s − 42.9·35-s + 115.·37-s − 39·39-s + 1.41·41-s − 337.·43-s − 68.6·45-s − 198.·47-s − 311.·49-s − 6·51-s + 59.0·53-s − 263.·55-s + ⋯
L(s)  = 1  − 0.577·3-s − 0.682·5-s + 0.303·7-s + 0.333·9-s + 0.946·11-s + 0.277·13-s + 0.394·15-s + 0.0285·17-s − 1.06·19-s − 0.175·21-s − 0.580·23-s − 0.534·25-s − 0.192·27-s + 0.152·29-s − 1.64·31-s − 0.546·33-s − 0.207·35-s + 0.512·37-s − 0.160·39-s + 0.00537·41-s − 1.19·43-s − 0.227·45-s − 0.615·47-s − 0.907·49-s − 0.0164·51-s + 0.153·53-s − 0.645·55-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 312 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 312 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(312\)    =    \(2^{3} \cdot 3 \cdot 13\)
Sign: $-1$
Analytic conductor: \(18.4085\)
Root analytic conductor: \(4.29052\)
Motivic weight: \(3\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 312,\ (\ :3/2),\ -1)\)

Particular Values

\(L(2)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 + 3T \)
13 \( 1 - 13T \)
good5 \( 1 + 7.63T + 125T^{2} \)
7 \( 1 - 5.63T + 343T^{2} \)
11 \( 1 - 34.5T + 1.33e3T^{2} \)
17 \( 1 - 2T + 4.91e3T^{2} \)
19 \( 1 + 88.1T + 6.85e3T^{2} \)
23 \( 1 + 64T + 1.21e4T^{2} \)
29 \( 1 - 23.7T + 2.43e4T^{2} \)
31 \( 1 + 284.T + 2.97e4T^{2} \)
37 \( 1 - 115.T + 5.06e4T^{2} \)
41 \( 1 - 1.41T + 6.89e4T^{2} \)
43 \( 1 + 337.T + 7.95e4T^{2} \)
47 \( 1 + 198.T + 1.03e5T^{2} \)
53 \( 1 - 59.0T + 1.48e5T^{2} \)
59 \( 1 + 188.T + 2.05e5T^{2} \)
61 \( 1 - 336.T + 2.26e5T^{2} \)
67 \( 1 + 531.T + 3.00e5T^{2} \)
71 \( 1 + 510.T + 3.57e5T^{2} \)
73 \( 1 + 164.T + 3.89e5T^{2} \)
79 \( 1 + 29.3T + 4.93e5T^{2} \)
83 \( 1 + 117.T + 5.71e5T^{2} \)
89 \( 1 - 508.T + 7.04e5T^{2} \)
97 \( 1 + 1.02e3T + 9.12e5T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−11.02978616120094852203988797375, −9.940840277987285178439966104772, −8.825879345907695581214683451340, −7.87759948175251218017594841934, −6.80782589689300687629677522991, −5.86677578586460800073622475365, −4.54013886905400691343241210497, −3.65589810597696841341480919043, −1.68543225700646612433393461335, 0, 1.68543225700646612433393461335, 3.65589810597696841341480919043, 4.54013886905400691343241210497, 5.86677578586460800073622475365, 6.80782589689300687629677522991, 7.87759948175251218017594841934, 8.825879345907695581214683451340, 9.940840277987285178439966104772, 11.02978616120094852203988797375

Graph of the $Z$-function along the critical line