L(s) = 1 | − 3·3-s − 7.63·5-s + 5.63·7-s + 9·9-s + 34.5·11-s + 13·13-s + 22.8·15-s + 2·17-s − 88.1·19-s − 16.8·21-s − 64·23-s − 66.7·25-s − 27·27-s + 23.7·29-s − 284.·31-s − 103.·33-s − 42.9·35-s + 115.·37-s − 39·39-s + 1.41·41-s − 337.·43-s − 68.6·45-s − 198.·47-s − 311.·49-s − 6·51-s + 59.0·53-s − 263.·55-s + ⋯ |
L(s) = 1 | − 0.577·3-s − 0.682·5-s + 0.303·7-s + 0.333·9-s + 0.946·11-s + 0.277·13-s + 0.394·15-s + 0.0285·17-s − 1.06·19-s − 0.175·21-s − 0.580·23-s − 0.534·25-s − 0.192·27-s + 0.152·29-s − 1.64·31-s − 0.546·33-s − 0.207·35-s + 0.512·37-s − 0.160·39-s + 0.00537·41-s − 1.19·43-s − 0.227·45-s − 0.615·47-s − 0.907·49-s − 0.0164·51-s + 0.153·53-s − 0.645·55-s + ⋯ |
Λ(s)=(=(312s/2ΓC(s)L(s)−Λ(4−s)
Λ(s)=(=(312s/2ΓC(s+3/2)L(s)−Λ(1−s)
Particular Values
L(2) |
= |
0 |
L(21) |
= |
0 |
L(25) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 3 | 1+3T |
| 13 | 1−13T |
good | 5 | 1+7.63T+125T2 |
| 7 | 1−5.63T+343T2 |
| 11 | 1−34.5T+1.33e3T2 |
| 17 | 1−2T+4.91e3T2 |
| 19 | 1+88.1T+6.85e3T2 |
| 23 | 1+64T+1.21e4T2 |
| 29 | 1−23.7T+2.43e4T2 |
| 31 | 1+284.T+2.97e4T2 |
| 37 | 1−115.T+5.06e4T2 |
| 41 | 1−1.41T+6.89e4T2 |
| 43 | 1+337.T+7.95e4T2 |
| 47 | 1+198.T+1.03e5T2 |
| 53 | 1−59.0T+1.48e5T2 |
| 59 | 1+188.T+2.05e5T2 |
| 61 | 1−336.T+2.26e5T2 |
| 67 | 1+531.T+3.00e5T2 |
| 71 | 1+510.T+3.57e5T2 |
| 73 | 1+164.T+3.89e5T2 |
| 79 | 1+29.3T+4.93e5T2 |
| 83 | 1+117.T+5.71e5T2 |
| 89 | 1−508.T+7.04e5T2 |
| 97 | 1+1.02e3T+9.12e5T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−11.02978616120094852203988797375, −9.940840277987285178439966104772, −8.825879345907695581214683451340, −7.87759948175251218017594841934, −6.80782589689300687629677522991, −5.86677578586460800073622475365, −4.54013886905400691343241210497, −3.65589810597696841341480919043, −1.68543225700646612433393461335, 0,
1.68543225700646612433393461335, 3.65589810597696841341480919043, 4.54013886905400691343241210497, 5.86677578586460800073622475365, 6.80782589689300687629677522991, 7.87759948175251218017594841934, 8.825879345907695581214683451340, 9.940840277987285178439966104772, 11.02978616120094852203988797375