L(s) = 1 | + 3·3-s + 12.9·5-s + 1.76·7-s + 9·9-s + 25.1·11-s + 13·13-s + 38.8·15-s − 62.6·17-s + 139.·19-s + 5.29·21-s − 56.6·23-s + 42.9·25-s + 27·27-s + 75.4·29-s − 71.2·31-s + 75.5·33-s + 22.8·35-s + 55.7·37-s + 39·39-s − 40.0·41-s + 14.7·43-s + 116.·45-s + 531.·47-s − 339.·49-s − 187.·51-s + 368.·53-s + 326.·55-s + ⋯ |
L(s) = 1 | + 0.577·3-s + 1.15·5-s + 0.0952·7-s + 0.333·9-s + 0.690·11-s + 0.277·13-s + 0.669·15-s − 0.893·17-s + 1.68·19-s + 0.0550·21-s − 0.513·23-s + 0.343·25-s + 0.192·27-s + 0.482·29-s − 0.413·31-s + 0.398·33-s + 0.110·35-s + 0.247·37-s + 0.160·39-s − 0.152·41-s + 0.0524·43-s + 0.386·45-s + 1.64·47-s − 0.990·49-s − 0.515·51-s + 0.953·53-s + 0.800·55-s + ⋯ |
Λ(s)=(=(312s/2ΓC(s)L(s)Λ(4−s)
Λ(s)=(=(312s/2ΓC(s+3/2)L(s)Λ(1−s)
Particular Values
L(2) |
≈ |
2.978766682 |
L(21) |
≈ |
2.978766682 |
L(25) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 3 | 1−3T |
| 13 | 1−13T |
good | 5 | 1−12.9T+125T2 |
| 7 | 1−1.76T+343T2 |
| 11 | 1−25.1T+1.33e3T2 |
| 17 | 1+62.6T+4.91e3T2 |
| 19 | 1−139.T+6.85e3T2 |
| 23 | 1+56.6T+1.21e4T2 |
| 29 | 1−75.4T+2.43e4T2 |
| 31 | 1+71.2T+2.97e4T2 |
| 37 | 1−55.7T+5.06e4T2 |
| 41 | 1+40.0T+6.89e4T2 |
| 43 | 1−14.7T+7.95e4T2 |
| 47 | 1−531.T+1.03e5T2 |
| 53 | 1−368.T+1.48e5T2 |
| 59 | 1−165.T+2.05e5T2 |
| 61 | 1+145.T+2.26e5T2 |
| 67 | 1−901.T+3.00e5T2 |
| 71 | 1+345.T+3.57e5T2 |
| 73 | 1+292.T+3.89e5T2 |
| 79 | 1+722.T+4.93e5T2 |
| 83 | 1−565.T+5.71e5T2 |
| 89 | 1+275.T+7.04e5T2 |
| 97 | 1+1.82e3T+9.12e5T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−11.20773849669217654583099184191, −10.04958611653186648911677439601, −9.405473028016121317522936551687, −8.606289509820526759436802645793, −7.36384634085107473617108983116, −6.33426764879916427070692880253, −5.31523515560876524689158029908, −3.92940301469109970451363992625, −2.54734859652549177684038742721, −1.34536899869049717706855553257,
1.34536899869049717706855553257, 2.54734859652549177684038742721, 3.92940301469109970451363992625, 5.31523515560876524689158029908, 6.33426764879916427070692880253, 7.36384634085107473617108983116, 8.606289509820526759436802645793, 9.405473028016121317522936551687, 10.04958611653186648911677439601, 11.20773849669217654583099184191