Properties

Label 2-312-1.1-c3-0-7
Degree $2$
Conductor $312$
Sign $1$
Analytic cond. $18.4085$
Root an. cond. $4.29052$
Motivic weight $3$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 3·3-s + 3.18·5-s + 23.9·7-s + 9·9-s − 6.74·11-s + 13·13-s + 9.55·15-s + 104.·17-s − 137.·19-s + 71.8·21-s + 110.·23-s − 114.·25-s + 27·27-s − 57.6·29-s + 319.·31-s − 20.2·33-s + 76.2·35-s − 2.88·37-s + 39·39-s + 319.·41-s + 344.·43-s + 28.6·45-s − 439.·47-s + 229.·49-s + 312.·51-s − 97.2·53-s − 21.5·55-s + ⋯
L(s)  = 1  + 0.577·3-s + 0.285·5-s + 1.29·7-s + 0.333·9-s − 0.184·11-s + 0.277·13-s + 0.164·15-s + 1.48·17-s − 1.66·19-s + 0.746·21-s + 0.999·23-s − 0.918·25-s + 0.192·27-s − 0.368·29-s + 1.85·31-s − 0.106·33-s + 0.368·35-s − 0.0128·37-s + 0.160·39-s + 1.21·41-s + 1.22·43-s + 0.0950·45-s − 1.36·47-s + 0.670·49-s + 0.858·51-s − 0.252·53-s − 0.0527·55-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 312 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 312 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(312\)    =    \(2^{3} \cdot 3 \cdot 13\)
Sign: $1$
Analytic conductor: \(18.4085\)
Root analytic conductor: \(4.29052\)
Motivic weight: \(3\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 312,\ (\ :3/2),\ 1)\)

Particular Values

\(L(2)\) \(\approx\) \(2.821722039\)
\(L(\frac12)\) \(\approx\) \(2.821722039\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 - 3T \)
13 \( 1 - 13T \)
good5 \( 1 - 3.18T + 125T^{2} \)
7 \( 1 - 23.9T + 343T^{2} \)
11 \( 1 + 6.74T + 1.33e3T^{2} \)
17 \( 1 - 104.T + 4.91e3T^{2} \)
19 \( 1 + 137.T + 6.85e3T^{2} \)
23 \( 1 - 110.T + 1.21e4T^{2} \)
29 \( 1 + 57.6T + 2.43e4T^{2} \)
31 \( 1 - 319.T + 2.97e4T^{2} \)
37 \( 1 + 2.88T + 5.06e4T^{2} \)
41 \( 1 - 319.T + 6.89e4T^{2} \)
43 \( 1 - 344.T + 7.95e4T^{2} \)
47 \( 1 + 439.T + 1.03e5T^{2} \)
53 \( 1 + 97.2T + 1.48e5T^{2} \)
59 \( 1 - 448.T + 2.05e5T^{2} \)
61 \( 1 + 264.T + 2.26e5T^{2} \)
67 \( 1 + 712.T + 3.00e5T^{2} \)
71 \( 1 - 1.13e3T + 3.57e5T^{2} \)
73 \( 1 + 666.T + 3.89e5T^{2} \)
79 \( 1 - 828.T + 4.93e5T^{2} \)
83 \( 1 - 734.T + 5.71e5T^{2} \)
89 \( 1 - 153.T + 7.04e5T^{2} \)
97 \( 1 + 569.T + 9.12e5T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−11.15003699293305770209381085460, −10.34327466307908007684873644831, −9.298997621017830567667931692679, −8.231348745215258846556215206362, −7.74625267847375434307166331133, −6.32463786780079316901959010933, −5.13008107496469887309850665877, −4.05860914379598049431676422649, −2.55081009997226885584129771962, −1.29496283448469993975045199689, 1.29496283448469993975045199689, 2.55081009997226885584129771962, 4.05860914379598049431676422649, 5.13008107496469887309850665877, 6.32463786780079316901959010933, 7.74625267847375434307166331133, 8.231348745215258846556215206362, 9.298997621017830567667931692679, 10.34327466307908007684873644831, 11.15003699293305770209381085460

Graph of the $Z$-function along the critical line