L(s) = 1 | + 3·3-s + 3.18·5-s + 23.9·7-s + 9·9-s − 6.74·11-s + 13·13-s + 9.55·15-s + 104.·17-s − 137.·19-s + 71.8·21-s + 110.·23-s − 114.·25-s + 27·27-s − 57.6·29-s + 319.·31-s − 20.2·33-s + 76.2·35-s − 2.88·37-s + 39·39-s + 319.·41-s + 344.·43-s + 28.6·45-s − 439.·47-s + 229.·49-s + 312.·51-s − 97.2·53-s − 21.5·55-s + ⋯ |
L(s) = 1 | + 0.577·3-s + 0.285·5-s + 1.29·7-s + 0.333·9-s − 0.184·11-s + 0.277·13-s + 0.164·15-s + 1.48·17-s − 1.66·19-s + 0.746·21-s + 0.999·23-s − 0.918·25-s + 0.192·27-s − 0.368·29-s + 1.85·31-s − 0.106·33-s + 0.368·35-s − 0.0128·37-s + 0.160·39-s + 1.21·41-s + 1.22·43-s + 0.0950·45-s − 1.36·47-s + 0.670·49-s + 0.858·51-s − 0.252·53-s − 0.0527·55-s + ⋯ |
Λ(s)=(=(312s/2ΓC(s)L(s)Λ(4−s)
Λ(s)=(=(312s/2ΓC(s+3/2)L(s)Λ(1−s)
Particular Values
L(2) |
≈ |
2.821722039 |
L(21) |
≈ |
2.821722039 |
L(25) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 3 | 1−3T |
| 13 | 1−13T |
good | 5 | 1−3.18T+125T2 |
| 7 | 1−23.9T+343T2 |
| 11 | 1+6.74T+1.33e3T2 |
| 17 | 1−104.T+4.91e3T2 |
| 19 | 1+137.T+6.85e3T2 |
| 23 | 1−110.T+1.21e4T2 |
| 29 | 1+57.6T+2.43e4T2 |
| 31 | 1−319.T+2.97e4T2 |
| 37 | 1+2.88T+5.06e4T2 |
| 41 | 1−319.T+6.89e4T2 |
| 43 | 1−344.T+7.95e4T2 |
| 47 | 1+439.T+1.03e5T2 |
| 53 | 1+97.2T+1.48e5T2 |
| 59 | 1−448.T+2.05e5T2 |
| 61 | 1+264.T+2.26e5T2 |
| 67 | 1+712.T+3.00e5T2 |
| 71 | 1−1.13e3T+3.57e5T2 |
| 73 | 1+666.T+3.89e5T2 |
| 79 | 1−828.T+4.93e5T2 |
| 83 | 1−734.T+5.71e5T2 |
| 89 | 1−153.T+7.04e5T2 |
| 97 | 1+569.T+9.12e5T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−11.15003699293305770209381085460, −10.34327466307908007684873644831, −9.298997621017830567667931692679, −8.231348745215258846556215206362, −7.74625267847375434307166331133, −6.32463786780079316901959010933, −5.13008107496469887309850665877, −4.05860914379598049431676422649, −2.55081009997226885584129771962, −1.29496283448469993975045199689,
1.29496283448469993975045199689, 2.55081009997226885584129771962, 4.05860914379598049431676422649, 5.13008107496469887309850665877, 6.32463786780079316901959010933, 7.74625267847375434307166331133, 8.231348745215258846556215206362, 9.298997621017830567667931692679, 10.34327466307908007684873644831, 11.15003699293305770209381085460