Properties

Label 2-312-1.1-c3-0-4
Degree $2$
Conductor $312$
Sign $1$
Analytic cond. $18.4085$
Root an. cond. $4.29052$
Motivic weight $3$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 3·3-s − 7.11·5-s + 8.88·7-s + 9·9-s + 26·11-s − 13·13-s − 21.3·15-s + 16.2·17-s + 35.5·19-s + 26.6·21-s + 153.·23-s − 74.3·25-s + 27·27-s + 223.·29-s + 126.·31-s + 78·33-s − 63.2·35-s + 217.·37-s − 39·39-s + 105.·41-s − 183.·43-s − 64.0·45-s + 96.6·47-s − 264.·49-s + 48.6·51-s + 386.·53-s − 184.·55-s + ⋯
L(s)  = 1  + 0.577·3-s − 0.636·5-s + 0.479·7-s + 0.333·9-s + 0.712·11-s − 0.277·13-s − 0.367·15-s + 0.231·17-s + 0.429·19-s + 0.276·21-s + 1.39·23-s − 0.595·25-s + 0.192·27-s + 1.43·29-s + 0.734·31-s + 0.411·33-s − 0.305·35-s + 0.966·37-s − 0.160·39-s + 0.403·41-s − 0.651·43-s − 0.212·45-s + 0.300·47-s − 0.769·49-s + 0.133·51-s + 1.00·53-s − 0.453·55-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 312 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 312 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(312\)    =    \(2^{3} \cdot 3 \cdot 13\)
Sign: $1$
Analytic conductor: \(18.4085\)
Root analytic conductor: \(4.29052\)
Motivic weight: \(3\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 312,\ (\ :3/2),\ 1)\)

Particular Values

\(L(2)\) \(\approx\) \(2.283355206\)
\(L(\frac12)\) \(\approx\) \(2.283355206\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 - 3T \)
13 \( 1 + 13T \)
good5 \( 1 + 7.11T + 125T^{2} \)
7 \( 1 - 8.88T + 343T^{2} \)
11 \( 1 - 26T + 1.33e3T^{2} \)
17 \( 1 - 16.2T + 4.91e3T^{2} \)
19 \( 1 - 35.5T + 6.85e3T^{2} \)
23 \( 1 - 153.T + 1.21e4T^{2} \)
29 \( 1 - 223.T + 2.43e4T^{2} \)
31 \( 1 - 126.T + 2.97e4T^{2} \)
37 \( 1 - 217.T + 5.06e4T^{2} \)
41 \( 1 - 105.T + 6.89e4T^{2} \)
43 \( 1 + 183.T + 7.95e4T^{2} \)
47 \( 1 - 96.6T + 1.03e5T^{2} \)
53 \( 1 - 386.T + 1.48e5T^{2} \)
59 \( 1 - 34.5T + 2.05e5T^{2} \)
61 \( 1 - 274.T + 2.26e5T^{2} \)
67 \( 1 - 93.9T + 3.00e5T^{2} \)
71 \( 1 + 741.T + 3.57e5T^{2} \)
73 \( 1 - 640.T + 3.89e5T^{2} \)
79 \( 1 + 182.T + 4.93e5T^{2} \)
83 \( 1 + 288.T + 5.71e5T^{2} \)
89 \( 1 - 963.T + 7.04e5T^{2} \)
97 \( 1 + 481.T + 9.12e5T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−11.42214398917128688713621417985, −10.24788617272732909805315794294, −9.264813226358060540585988578082, −8.346252110582788825116967335954, −7.54957521691544461779378250866, −6.53715315204666169112077639816, −5.00426301943975155280014032240, −3.98523586614477440481232678366, −2.76919953794383634385098601660, −1.10022464665493037666502970190, 1.10022464665493037666502970190, 2.76919953794383634385098601660, 3.98523586614477440481232678366, 5.00426301943975155280014032240, 6.53715315204666169112077639816, 7.54957521691544461779378250866, 8.346252110582788825116967335954, 9.264813226358060540585988578082, 10.24788617272732909805315794294, 11.42214398917128688713621417985

Graph of the $Z$-function along the critical line