L(s) = 1 | + 3·3-s − 7.11·5-s + 8.88·7-s + 9·9-s + 26·11-s − 13·13-s − 21.3·15-s + 16.2·17-s + 35.5·19-s + 26.6·21-s + 153.·23-s − 74.3·25-s + 27·27-s + 223.·29-s + 126.·31-s + 78·33-s − 63.2·35-s + 217.·37-s − 39·39-s + 105.·41-s − 183.·43-s − 64.0·45-s + 96.6·47-s − 264.·49-s + 48.6·51-s + 386.·53-s − 184.·55-s + ⋯ |
L(s) = 1 | + 0.577·3-s − 0.636·5-s + 0.479·7-s + 0.333·9-s + 0.712·11-s − 0.277·13-s − 0.367·15-s + 0.231·17-s + 0.429·19-s + 0.276·21-s + 1.39·23-s − 0.595·25-s + 0.192·27-s + 1.43·29-s + 0.734·31-s + 0.411·33-s − 0.305·35-s + 0.966·37-s − 0.160·39-s + 0.403·41-s − 0.651·43-s − 0.212·45-s + 0.300·47-s − 0.769·49-s + 0.133·51-s + 1.00·53-s − 0.453·55-s + ⋯ |
Λ(s)=(=(312s/2ΓC(s)L(s)Λ(4−s)
Λ(s)=(=(312s/2ΓC(s+3/2)L(s)Λ(1−s)
Particular Values
L(2) |
≈ |
2.283355206 |
L(21) |
≈ |
2.283355206 |
L(25) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 3 | 1−3T |
| 13 | 1+13T |
good | 5 | 1+7.11T+125T2 |
| 7 | 1−8.88T+343T2 |
| 11 | 1−26T+1.33e3T2 |
| 17 | 1−16.2T+4.91e3T2 |
| 19 | 1−35.5T+6.85e3T2 |
| 23 | 1−153.T+1.21e4T2 |
| 29 | 1−223.T+2.43e4T2 |
| 31 | 1−126.T+2.97e4T2 |
| 37 | 1−217.T+5.06e4T2 |
| 41 | 1−105.T+6.89e4T2 |
| 43 | 1+183.T+7.95e4T2 |
| 47 | 1−96.6T+1.03e5T2 |
| 53 | 1−386.T+1.48e5T2 |
| 59 | 1−34.5T+2.05e5T2 |
| 61 | 1−274.T+2.26e5T2 |
| 67 | 1−93.9T+3.00e5T2 |
| 71 | 1+741.T+3.57e5T2 |
| 73 | 1−640.T+3.89e5T2 |
| 79 | 1+182.T+4.93e5T2 |
| 83 | 1+288.T+5.71e5T2 |
| 89 | 1−963.T+7.04e5T2 |
| 97 | 1+481.T+9.12e5T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−11.42214398917128688713621417985, −10.24788617272732909805315794294, −9.264813226358060540585988578082, −8.346252110582788825116967335954, −7.54957521691544461779378250866, −6.53715315204666169112077639816, −5.00426301943975155280014032240, −3.98523586614477440481232678366, −2.76919953794383634385098601660, −1.10022464665493037666502970190,
1.10022464665493037666502970190, 2.76919953794383634385098601660, 3.98523586614477440481232678366, 5.00426301943975155280014032240, 6.53715315204666169112077639816, 7.54957521691544461779378250866, 8.346252110582788825116967335954, 9.264813226358060540585988578082, 10.24788617272732909805315794294, 11.42214398917128688713621417985