Properties

Label 2-312-1.1-c3-0-3
Degree $2$
Conductor $312$
Sign $1$
Analytic cond. $18.4085$
Root an. cond. $4.29052$
Motivic weight $3$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 3·3-s + 18.8·5-s − 17.9·7-s + 9·9-s + 44.5·11-s + 13·13-s − 56.6·15-s + 34·17-s − 152.·19-s + 53.7·21-s + 107.·23-s + 231.·25-s − 27·27-s + 149.·29-s + 0.162·31-s − 133.·33-s − 338.·35-s − 256.·37-s − 39·39-s + 414.·41-s + 471.·43-s + 169.·45-s + 632.·47-s − 21.6·49-s − 102·51-s − 236.·53-s + 841.·55-s + ⋯
L(s)  = 1  − 0.577·3-s + 1.68·5-s − 0.967·7-s + 0.333·9-s + 1.22·11-s + 0.277·13-s − 0.975·15-s + 0.485·17-s − 1.84·19-s + 0.558·21-s + 0.972·23-s + 1.85·25-s − 0.192·27-s + 0.958·29-s + 0.000943·31-s − 0.705·33-s − 1.63·35-s − 1.13·37-s − 0.160·39-s + 1.57·41-s + 1.67·43-s + 0.562·45-s + 1.96·47-s − 0.0630·49-s − 0.280·51-s − 0.612·53-s + 2.06·55-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 312 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 312 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(312\)    =    \(2^{3} \cdot 3 \cdot 13\)
Sign: $1$
Analytic conductor: \(18.4085\)
Root analytic conductor: \(4.29052\)
Motivic weight: \(3\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 312,\ (\ :3/2),\ 1)\)

Particular Values

\(L(2)\) \(\approx\) \(2.025862988\)
\(L(\frac12)\) \(\approx\) \(2.025862988\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 + 3T \)
13 \( 1 - 13T \)
good5 \( 1 - 18.8T + 125T^{2} \)
7 \( 1 + 17.9T + 343T^{2} \)
11 \( 1 - 44.5T + 1.33e3T^{2} \)
17 \( 1 - 34T + 4.91e3T^{2} \)
19 \( 1 + 152.T + 6.85e3T^{2} \)
23 \( 1 - 107.T + 1.21e4T^{2} \)
29 \( 1 - 149.T + 2.43e4T^{2} \)
31 \( 1 - 0.162T + 2.97e4T^{2} \)
37 \( 1 + 256.T + 5.06e4T^{2} \)
41 \( 1 - 414.T + 6.89e4T^{2} \)
43 \( 1 - 471.T + 7.95e4T^{2} \)
47 \( 1 - 632.T + 1.03e5T^{2} \)
53 \( 1 + 236.T + 1.48e5T^{2} \)
59 \( 1 + 108.T + 2.05e5T^{2} \)
61 \( 1 - 888.T + 2.26e5T^{2} \)
67 \( 1 - 637.T + 3.00e5T^{2} \)
71 \( 1 + 362.T + 3.57e5T^{2} \)
73 \( 1 - 723.T + 3.89e5T^{2} \)
79 \( 1 + 964.T + 4.93e5T^{2} \)
83 \( 1 + 431.T + 5.71e5T^{2} \)
89 \( 1 - 117.T + 7.04e5T^{2} \)
97 \( 1 + 1.15e3T + 9.12e5T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−11.01788255615281080044484688719, −10.29021215663515932674085102953, −9.434161759233823153514538101846, −8.795359260173360243040948108278, −6.85588928254275163404796722296, −6.31925337851100174766700954760, −5.55812580269464539366589043322, −4.10833045461729011644367023953, −2.49479002275101306809856162620, −1.08246744018822829343940846184, 1.08246744018822829343940846184, 2.49479002275101306809856162620, 4.10833045461729011644367023953, 5.55812580269464539366589043322, 6.31925337851100174766700954760, 6.85588928254275163404796722296, 8.795359260173360243040948108278, 9.434161759233823153514538101846, 10.29021215663515932674085102953, 11.01788255615281080044484688719

Graph of the $Z$-function along the critical line