L(s) = 1 | − 3·3-s + 18.8·5-s − 17.9·7-s + 9·9-s + 44.5·11-s + 13·13-s − 56.6·15-s + 34·17-s − 152.·19-s + 53.7·21-s + 107.·23-s + 231.·25-s − 27·27-s + 149.·29-s + 0.162·31-s − 133.·33-s − 338.·35-s − 256.·37-s − 39·39-s + 414.·41-s + 471.·43-s + 169.·45-s + 632.·47-s − 21.6·49-s − 102·51-s − 236.·53-s + 841.·55-s + ⋯ |
L(s) = 1 | − 0.577·3-s + 1.68·5-s − 0.967·7-s + 0.333·9-s + 1.22·11-s + 0.277·13-s − 0.975·15-s + 0.485·17-s − 1.84·19-s + 0.558·21-s + 0.972·23-s + 1.85·25-s − 0.192·27-s + 0.958·29-s + 0.000943·31-s − 0.705·33-s − 1.63·35-s − 1.13·37-s − 0.160·39-s + 1.57·41-s + 1.67·43-s + 0.562·45-s + 1.96·47-s − 0.0630·49-s − 0.280·51-s − 0.612·53-s + 2.06·55-s + ⋯ |
Λ(s)=(=(312s/2ΓC(s)L(s)Λ(4−s)
Λ(s)=(=(312s/2ΓC(s+3/2)L(s)Λ(1−s)
Particular Values
L(2) |
≈ |
2.025862988 |
L(21) |
≈ |
2.025862988 |
L(25) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 3 | 1+3T |
| 13 | 1−13T |
good | 5 | 1−18.8T+125T2 |
| 7 | 1+17.9T+343T2 |
| 11 | 1−44.5T+1.33e3T2 |
| 17 | 1−34T+4.91e3T2 |
| 19 | 1+152.T+6.85e3T2 |
| 23 | 1−107.T+1.21e4T2 |
| 29 | 1−149.T+2.43e4T2 |
| 31 | 1−0.162T+2.97e4T2 |
| 37 | 1+256.T+5.06e4T2 |
| 41 | 1−414.T+6.89e4T2 |
| 43 | 1−471.T+7.95e4T2 |
| 47 | 1−632.T+1.03e5T2 |
| 53 | 1+236.T+1.48e5T2 |
| 59 | 1+108.T+2.05e5T2 |
| 61 | 1−888.T+2.26e5T2 |
| 67 | 1−637.T+3.00e5T2 |
| 71 | 1+362.T+3.57e5T2 |
| 73 | 1−723.T+3.89e5T2 |
| 79 | 1+964.T+4.93e5T2 |
| 83 | 1+431.T+5.71e5T2 |
| 89 | 1−117.T+7.04e5T2 |
| 97 | 1+1.15e3T+9.12e5T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−11.01788255615281080044484688719, −10.29021215663515932674085102953, −9.434161759233823153514538101846, −8.795359260173360243040948108278, −6.85588928254275163404796722296, −6.31925337851100174766700954760, −5.55812580269464539366589043322, −4.10833045461729011644367023953, −2.49479002275101306809856162620, −1.08246744018822829343940846184,
1.08246744018822829343940846184, 2.49479002275101306809856162620, 4.10833045461729011644367023953, 5.55812580269464539366589043322, 6.31925337851100174766700954760, 6.85588928254275163404796722296, 8.795359260173360243040948108278, 9.434161759233823153514538101846, 10.29021215663515932674085102953, 11.01788255615281080044484688719