Properties

Label 2-312-1.1-c3-0-14
Degree $2$
Conductor $312$
Sign $-1$
Analytic cond. $18.4085$
Root an. cond. $4.29052$
Motivic weight $3$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 3·3-s − 13.1·5-s + 15.6·7-s + 9·9-s − 55.7·11-s + 13·13-s − 39.3·15-s + 23.4·17-s − 25.6·19-s + 46.8·21-s − 189.·23-s + 47.2·25-s + 27·27-s − 236.·29-s + 47.0·31-s − 167.·33-s − 204.·35-s − 154.·37-s + 39·39-s − 34.6·41-s − 398.·43-s − 118.·45-s + 582.·47-s − 99.1·49-s + 70.4·51-s − 361.·53-s + 731.·55-s + ⋯
L(s)  = 1  + 0.577·3-s − 1.17·5-s + 0.843·7-s + 0.333·9-s − 1.52·11-s + 0.277·13-s − 0.677·15-s + 0.334·17-s − 0.309·19-s + 0.486·21-s − 1.71·23-s + 0.377·25-s + 0.192·27-s − 1.51·29-s + 0.272·31-s − 0.881·33-s − 0.989·35-s − 0.687·37-s + 0.160·39-s − 0.132·41-s − 1.41·43-s − 0.391·45-s + 1.80·47-s − 0.289·49-s + 0.193·51-s − 0.935·53-s + 1.79·55-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 312 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 312 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(312\)    =    \(2^{3} \cdot 3 \cdot 13\)
Sign: $-1$
Analytic conductor: \(18.4085\)
Root analytic conductor: \(4.29052\)
Motivic weight: \(3\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 312,\ (\ :3/2),\ -1)\)

Particular Values

\(L(2)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 - 3T \)
13 \( 1 - 13T \)
good5 \( 1 + 13.1T + 125T^{2} \)
7 \( 1 - 15.6T + 343T^{2} \)
11 \( 1 + 55.7T + 1.33e3T^{2} \)
17 \( 1 - 23.4T + 4.91e3T^{2} \)
19 \( 1 + 25.6T + 6.85e3T^{2} \)
23 \( 1 + 189.T + 1.21e4T^{2} \)
29 \( 1 + 236.T + 2.43e4T^{2} \)
31 \( 1 - 47.0T + 2.97e4T^{2} \)
37 \( 1 + 154.T + 5.06e4T^{2} \)
41 \( 1 + 34.6T + 6.89e4T^{2} \)
43 \( 1 + 398.T + 7.95e4T^{2} \)
47 \( 1 - 582.T + 1.03e5T^{2} \)
53 \( 1 + 361.T + 1.48e5T^{2} \)
59 \( 1 - 396.T + 2.05e5T^{2} \)
61 \( 1 + 211.T + 2.26e5T^{2} \)
67 \( 1 - 85.8T + 3.00e5T^{2} \)
71 \( 1 + 651.T + 3.57e5T^{2} \)
73 \( 1 - 927.T + 3.89e5T^{2} \)
79 \( 1 + 1.11e3T + 4.93e5T^{2} \)
83 \( 1 - 391.T + 5.71e5T^{2} \)
89 \( 1 + 745.T + 7.04e5T^{2} \)
97 \( 1 + 173.T + 9.12e5T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−10.83394782654989645206140862298, −9.930619319756160097953807829626, −8.486485898348483876344336995153, −7.985894070032192047860297427511, −7.32760487574813187890454752491, −5.63734182546104978125567275658, −4.46759038480210206541089976156, −3.45709916490424119660510429234, −2.00838632588726881683853527300, 0, 2.00838632588726881683853527300, 3.45709916490424119660510429234, 4.46759038480210206541089976156, 5.63734182546104978125567275658, 7.32760487574813187890454752491, 7.985894070032192047860297427511, 8.486485898348483876344336995153, 9.930619319756160097953807829626, 10.83394782654989645206140862298

Graph of the $Z$-function along the critical line