L(s) = 1 | − 3·3-s + 13.6·5-s − 15.6·7-s + 9·9-s − 50.5·11-s + 13·13-s − 40.8·15-s + 2·17-s + 18.1·19-s + 46.8·21-s − 64·23-s + 60.7·25-s − 27·27-s − 103.·29-s + 34.4·31-s + 151.·33-s − 213.·35-s − 267.·37-s − 39·39-s − 147.·41-s − 166.·43-s + 122.·45-s − 325.·47-s − 98.6·49-s − 6·51-s − 111.·53-s − 688.·55-s + ⋯ |
L(s) = 1 | − 0.577·3-s + 1.21·5-s − 0.843·7-s + 0.333·9-s − 1.38·11-s + 0.277·13-s − 0.703·15-s + 0.0285·17-s + 0.219·19-s + 0.487·21-s − 0.580·23-s + 0.486·25-s − 0.192·27-s − 0.664·29-s + 0.199·31-s + 0.799·33-s − 1.02·35-s − 1.18·37-s − 0.160·39-s − 0.561·41-s − 0.592·43-s + 0.406·45-s − 1.01·47-s − 0.287·49-s − 0.0164·51-s − 0.287·53-s − 1.68·55-s + ⋯ |
Λ(s)=(=(312s/2ΓC(s)L(s)−Λ(4−s)
Λ(s)=(=(312s/2ΓC(s+3/2)L(s)−Λ(1−s)
Particular Values
L(2) |
= |
0 |
L(21) |
= |
0 |
L(25) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 3 | 1+3T |
| 13 | 1−13T |
good | 5 | 1−13.6T+125T2 |
| 7 | 1+15.6T+343T2 |
| 11 | 1+50.5T+1.33e3T2 |
| 17 | 1−2T+4.91e3T2 |
| 19 | 1−18.1T+6.85e3T2 |
| 23 | 1+64T+1.21e4T2 |
| 29 | 1+103.T+2.43e4T2 |
| 31 | 1−34.4T+2.97e4T2 |
| 37 | 1+267.T+5.06e4T2 |
| 41 | 1+147.T+6.89e4T2 |
| 43 | 1+166.T+7.95e4T2 |
| 47 | 1+325.T+1.03e5T2 |
| 53 | 1+111.T+1.48e5T2 |
| 59 | 1−24.3T+2.05e5T2 |
| 61 | 1+640.T+2.26e5T2 |
| 67 | 1+382.T+3.00e5T2 |
| 71 | 1−510.T+3.57e5T2 |
| 73 | 1+291.T+3.89e5T2 |
| 79 | 1+794.T+4.93e5T2 |
| 83 | 1−945.T+5.71e5T2 |
| 89 | 1−317.T+7.04e5T2 |
| 97 | 1−1.57e3T+9.12e5T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−10.47408302912721709671895371089, −10.07219692754830156360763871506, −9.130084620197273060275968584433, −7.81594666308229760399335441251, −6.59181716711030375087842728346, −5.81576137688952866659119713553, −4.98556245367841609802608988824, −3.24264890822557178494249281106, −1.87730823113406259505474264815, 0,
1.87730823113406259505474264815, 3.24264890822557178494249281106, 4.98556245367841609802608988824, 5.81576137688952866659119713553, 6.59181716711030375087842728346, 7.81594666308229760399335441251, 9.130084620197273060275968584433, 10.07219692754830156360763871506, 10.47408302912721709671895371089