Properties

Label 2-312-1.1-c3-0-1
Degree $2$
Conductor $312$
Sign $1$
Analytic cond. $18.4085$
Root an. cond. $4.29052$
Motivic weight $3$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 3·3-s − 16.8·5-s − 4.83·7-s + 9·9-s − 39.6·11-s − 13·13-s + 50.4·15-s − 4.33·17-s + 28.8·19-s + 14.4·21-s + 0.670·23-s + 158.·25-s − 27·27-s − 6·29-s + 274.·31-s + 118.·33-s + 81.3·35-s + 84.3·37-s + 39·39-s + 209.·41-s + 364.·43-s − 151.·45-s + 239.·47-s − 319.·49-s + 13.0·51-s − 415.·53-s + 667.·55-s + ⋯
L(s)  = 1  − 0.577·3-s − 1.50·5-s − 0.260·7-s + 0.333·9-s − 1.08·11-s − 0.277·13-s + 0.869·15-s − 0.0618·17-s + 0.348·19-s + 0.150·21-s + 0.00607·23-s + 1.26·25-s − 0.192·27-s − 0.0384·29-s + 1.59·31-s + 0.627·33-s + 0.392·35-s + 0.374·37-s + 0.160·39-s + 0.796·41-s + 1.29·43-s − 0.501·45-s + 0.742·47-s − 0.931·49-s + 0.0357·51-s − 1.07·53-s + 1.63·55-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 312 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 312 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(312\)    =    \(2^{3} \cdot 3 \cdot 13\)
Sign: $1$
Analytic conductor: \(18.4085\)
Root analytic conductor: \(4.29052\)
Motivic weight: \(3\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 312,\ (\ :3/2),\ 1)\)

Particular Values

\(L(2)\) \(\approx\) \(0.7177120656\)
\(L(\frac12)\) \(\approx\) \(0.7177120656\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 + 3T \)
13 \( 1 + 13T \)
good5 \( 1 + 16.8T + 125T^{2} \)
7 \( 1 + 4.83T + 343T^{2} \)
11 \( 1 + 39.6T + 1.33e3T^{2} \)
17 \( 1 + 4.33T + 4.91e3T^{2} \)
19 \( 1 - 28.8T + 6.85e3T^{2} \)
23 \( 1 - 0.670T + 1.21e4T^{2} \)
29 \( 1 + 6T + 2.43e4T^{2} \)
31 \( 1 - 274.T + 2.97e4T^{2} \)
37 \( 1 - 84.3T + 5.06e4T^{2} \)
41 \( 1 - 209.T + 6.89e4T^{2} \)
43 \( 1 - 364.T + 7.95e4T^{2} \)
47 \( 1 - 239.T + 1.03e5T^{2} \)
53 \( 1 + 415.T + 1.48e5T^{2} \)
59 \( 1 - 78T + 2.05e5T^{2} \)
61 \( 1 + 813.T + 2.26e5T^{2} \)
67 \( 1 - 858.T + 3.00e5T^{2} \)
71 \( 1 + 213.T + 3.57e5T^{2} \)
73 \( 1 - 568.T + 3.89e5T^{2} \)
79 \( 1 - 583.T + 4.93e5T^{2} \)
83 \( 1 - 162.T + 5.71e5T^{2} \)
89 \( 1 - 1.41e3T + 7.04e5T^{2} \)
97 \( 1 + 798.T + 9.12e5T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−11.25436728830919157413193400354, −10.57088422815317014673382692516, −9.442446914904792999766688582196, −8.062716069301654496009204325083, −7.57122280748334288161192085717, −6.39678236371818131417447254622, −5.08873577320498880915398998606, −4.14506193888781918586256226119, −2.84525773573596656463848730287, −0.58206734096837513085031327682, 0.58206734096837513085031327682, 2.84525773573596656463848730287, 4.14506193888781918586256226119, 5.08873577320498880915398998606, 6.39678236371818131417447254622, 7.57122280748334288161192085717, 8.062716069301654496009204325083, 9.442446914904792999766688582196, 10.57088422815317014673382692516, 11.25436728830919157413193400354

Graph of the $Z$-function along the critical line