L(s) = 1 | − 3·3-s − 16.8·5-s − 4.83·7-s + 9·9-s − 39.6·11-s − 13·13-s + 50.4·15-s − 4.33·17-s + 28.8·19-s + 14.4·21-s + 0.670·23-s + 158.·25-s − 27·27-s − 6·29-s + 274.·31-s + 118.·33-s + 81.3·35-s + 84.3·37-s + 39·39-s + 209.·41-s + 364.·43-s − 151.·45-s + 239.·47-s − 319.·49-s + 13.0·51-s − 415.·53-s + 667.·55-s + ⋯ |
L(s) = 1 | − 0.577·3-s − 1.50·5-s − 0.260·7-s + 0.333·9-s − 1.08·11-s − 0.277·13-s + 0.869·15-s − 0.0618·17-s + 0.348·19-s + 0.150·21-s + 0.00607·23-s + 1.26·25-s − 0.192·27-s − 0.0384·29-s + 1.59·31-s + 0.627·33-s + 0.392·35-s + 0.374·37-s + 0.160·39-s + 0.796·41-s + 1.29·43-s − 0.501·45-s + 0.742·47-s − 0.931·49-s + 0.0357·51-s − 1.07·53-s + 1.63·55-s + ⋯ |
Λ(s)=(=(312s/2ΓC(s)L(s)Λ(4−s)
Λ(s)=(=(312s/2ΓC(s+3/2)L(s)Λ(1−s)
Particular Values
L(2) |
≈ |
0.7177120656 |
L(21) |
≈ |
0.7177120656 |
L(25) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 3 | 1+3T |
| 13 | 1+13T |
good | 5 | 1+16.8T+125T2 |
| 7 | 1+4.83T+343T2 |
| 11 | 1+39.6T+1.33e3T2 |
| 17 | 1+4.33T+4.91e3T2 |
| 19 | 1−28.8T+6.85e3T2 |
| 23 | 1−0.670T+1.21e4T2 |
| 29 | 1+6T+2.43e4T2 |
| 31 | 1−274.T+2.97e4T2 |
| 37 | 1−84.3T+5.06e4T2 |
| 41 | 1−209.T+6.89e4T2 |
| 43 | 1−364.T+7.95e4T2 |
| 47 | 1−239.T+1.03e5T2 |
| 53 | 1+415.T+1.48e5T2 |
| 59 | 1−78T+2.05e5T2 |
| 61 | 1+813.T+2.26e5T2 |
| 67 | 1−858.T+3.00e5T2 |
| 71 | 1+213.T+3.57e5T2 |
| 73 | 1−568.T+3.89e5T2 |
| 79 | 1−583.T+4.93e5T2 |
| 83 | 1−162.T+5.71e5T2 |
| 89 | 1−1.41e3T+7.04e5T2 |
| 97 | 1+798.T+9.12e5T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−11.25436728830919157413193400354, −10.57088422815317014673382692516, −9.442446914904792999766688582196, −8.062716069301654496009204325083, −7.57122280748334288161192085717, −6.39678236371818131417447254622, −5.08873577320498880915398998606, −4.14506193888781918586256226119, −2.84525773573596656463848730287, −0.58206734096837513085031327682,
0.58206734096837513085031327682, 2.84525773573596656463848730287, 4.14506193888781918586256226119, 5.08873577320498880915398998606, 6.39678236371818131417447254622, 7.57122280748334288161192085717, 8.062716069301654496009204325083, 9.442446914904792999766688582196, 10.57088422815317014673382692516, 11.25436728830919157413193400354