Properties

Label 2-31-31.30-c6-0-3
Degree $2$
Conductor $31$
Sign $1$
Analytic cond. $7.13167$
Root an. cond. $2.67051$
Motivic weight $6$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 15·2-s + 161·4-s − 246·5-s − 430·7-s − 1.45e3·8-s + 729·9-s + 3.69e3·10-s + 6.45e3·14-s + 1.15e4·16-s − 1.09e4·18-s + 1.06e4·19-s − 3.96e4·20-s + 4.48e4·25-s − 6.92e4·28-s − 2.97e4·31-s − 7.96e4·32-s + 1.05e5·35-s + 1.17e5·36-s − 1.59e5·38-s + 3.57e5·40-s − 6.05e4·41-s − 1.79e5·45-s + 1.71e5·47-s + 6.72e4·49-s − 6.73e5·50-s + 6.25e5·56-s + 1.36e5·59-s + ⋯
L(s)  = 1  − 1.87·2-s + 2.51·4-s − 1.96·5-s − 1.25·7-s − 2.84·8-s + 9-s + 3.68·10-s + 2.35·14-s + 2.81·16-s − 1.87·18-s + 1.54·19-s − 4.95·20-s + 2.87·25-s − 3.15·28-s − 31-s − 2.43·32-s + 2.46·35-s + 2.51·36-s − 2.90·38-s + 5.59·40-s − 0.878·41-s − 1.96·45-s + 1.65·47-s + 0.571·49-s − 5.38·50-s + 3.56·56-s + 0.666·59-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 31 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(7-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 31 ^{s/2} \, \Gamma_{\C}(s+3) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(31\)
Sign: $1$
Analytic conductor: \(7.13167\)
Root analytic conductor: \(2.67051\)
Motivic weight: \(6\)
Rational: yes
Arithmetic: yes
Character: $\chi_{31} (30, \cdot )$
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 31,\ (\ :3),\ 1)\)

Particular Values

\(L(\frac{7}{2})\) \(\approx\) \(0.3484160247\)
\(L(\frac12)\) \(\approx\) \(0.3484160247\)
\(L(4)\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad31 \( 1 + p^{3} T \)
good2 \( 1 + 15 T + p^{6} T^{2} \)
3 \( ( 1 - p^{3} T )( 1 + p^{3} T ) \)
5 \( 1 + 246 T + p^{6} T^{2} \)
7 \( 1 + 430 T + p^{6} T^{2} \)
11 \( ( 1 - p^{3} T )( 1 + p^{3} T ) \)
13 \( ( 1 - p^{3} T )( 1 + p^{3} T ) \)
17 \( ( 1 - p^{3} T )( 1 + p^{3} T ) \)
19 \( 1 - 10618 T + p^{6} T^{2} \)
23 \( ( 1 - p^{3} T )( 1 + p^{3} T ) \)
29 \( ( 1 - p^{3} T )( 1 + p^{3} T ) \)
37 \( ( 1 - p^{3} T )( 1 + p^{3} T ) \)
41 \( 1 + 60558 T + p^{6} T^{2} \)
43 \( ( 1 - p^{3} T )( 1 + p^{3} T ) \)
47 \( 1 - 171810 T + p^{6} T^{2} \)
53 \( ( 1 - p^{3} T )( 1 + p^{3} T ) \)
59 \( 1 - 136842 T + p^{6} T^{2} \)
61 \( ( 1 - p^{3} T )( 1 + p^{3} T ) \)
67 \( 1 + 133670 T + p^{6} T^{2} \)
71 \( 1 - 284178 T + p^{6} T^{2} \)
73 \( ( 1 - p^{3} T )( 1 + p^{3} T ) \)
79 \( ( 1 - p^{3} T )( 1 + p^{3} T ) \)
83 \( ( 1 - p^{3} T )( 1 + p^{3} T ) \)
89 \( ( 1 - p^{3} T )( 1 + p^{3} T ) \)
97 \( 1 - 1807490 T + p^{6} T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−15.94111592159695384775215938261, −15.36165536989464381497875641152, −12.51334466709860948944121497719, −11.53053452625768437971591688568, −10.25959883495607747915136177012, −9.065118761165065536808628316593, −7.64827883225499167030293822542, −6.97167795634074739591920598872, −3.42259970738871566827389033475, −0.65987254774365550354591134882, 0.65987254774365550354591134882, 3.42259970738871566827389033475, 6.97167795634074739591920598872, 7.64827883225499167030293822542, 9.065118761165065536808628316593, 10.25959883495607747915136177012, 11.53053452625768437971591688568, 12.51334466709860948944121497719, 15.36165536989464381497875641152, 15.94111592159695384775215938261

Graph of the $Z$-function along the critical line