L(s) = 1 | − 15·2-s + 161·4-s − 246·5-s − 430·7-s − 1.45e3·8-s + 729·9-s + 3.69e3·10-s + 6.45e3·14-s + 1.15e4·16-s − 1.09e4·18-s + 1.06e4·19-s − 3.96e4·20-s + 4.48e4·25-s − 6.92e4·28-s − 2.97e4·31-s − 7.96e4·32-s + 1.05e5·35-s + 1.17e5·36-s − 1.59e5·38-s + 3.57e5·40-s − 6.05e4·41-s − 1.79e5·45-s + 1.71e5·47-s + 6.72e4·49-s − 6.73e5·50-s + 6.25e5·56-s + 1.36e5·59-s + ⋯ |
L(s) = 1 | − 1.87·2-s + 2.51·4-s − 1.96·5-s − 1.25·7-s − 2.84·8-s + 9-s + 3.68·10-s + 2.35·14-s + 2.81·16-s − 1.87·18-s + 1.54·19-s − 4.95·20-s + 2.87·25-s − 3.15·28-s − 31-s − 2.43·32-s + 2.46·35-s + 2.51·36-s − 2.90·38-s + 5.59·40-s − 0.878·41-s − 1.96·45-s + 1.65·47-s + 0.571·49-s − 5.38·50-s + 3.56·56-s + 0.666·59-s + ⋯ |
Λ(s)=(=(31s/2ΓC(s)L(s)Λ(7−s)
Λ(s)=(=(31s/2ΓC(s+3)L(s)Λ(1−s)
Degree: |
2 |
Conductor: |
31
|
Sign: |
1
|
Analytic conductor: |
7.13167 |
Root analytic conductor: |
2.67051 |
Motivic weight: |
6 |
Rational: |
yes |
Arithmetic: |
yes |
Character: |
χ31(30,⋅)
|
Primitive: |
yes
|
Self-dual: |
yes
|
Analytic rank: |
0
|
Selberg data: |
(2, 31, ( :3), 1)
|
Particular Values
L(27) |
≈ |
0.3484160247 |
L(21) |
≈ |
0.3484160247 |
L(4) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 31 | 1+p3T |
good | 2 | 1+15T+p6T2 |
| 3 | (1−p3T)(1+p3T) |
| 5 | 1+246T+p6T2 |
| 7 | 1+430T+p6T2 |
| 11 | (1−p3T)(1+p3T) |
| 13 | (1−p3T)(1+p3T) |
| 17 | (1−p3T)(1+p3T) |
| 19 | 1−10618T+p6T2 |
| 23 | (1−p3T)(1+p3T) |
| 29 | (1−p3T)(1+p3T) |
| 37 | (1−p3T)(1+p3T) |
| 41 | 1+60558T+p6T2 |
| 43 | (1−p3T)(1+p3T) |
| 47 | 1−171810T+p6T2 |
| 53 | (1−p3T)(1+p3T) |
| 59 | 1−136842T+p6T2 |
| 61 | (1−p3T)(1+p3T) |
| 67 | 1+133670T+p6T2 |
| 71 | 1−284178T+p6T2 |
| 73 | (1−p3T)(1+p3T) |
| 79 | (1−p3T)(1+p3T) |
| 83 | (1−p3T)(1+p3T) |
| 89 | (1−p3T)(1+p3T) |
| 97 | 1−1807490T+p6T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−15.94111592159695384775215938261, −15.36165536989464381497875641152, −12.51334466709860948944121497719, −11.53053452625768437971591688568, −10.25959883495607747915136177012, −9.065118761165065536808628316593, −7.64827883225499167030293822542, −6.97167795634074739591920598872, −3.42259970738871566827389033475, −0.65987254774365550354591134882,
0.65987254774365550354591134882, 3.42259970738871566827389033475, 6.97167795634074739591920598872, 7.64827883225499167030293822542, 9.065118761165065536808628316593, 10.25959883495607747915136177012, 11.53053452625768437971591688568, 12.51334466709860948944121497719, 15.36165536989464381497875641152, 15.94111592159695384775215938261