Properties

Label 2-31-31.30-c18-0-20
Degree $2$
Conductor $31$
Sign $1$
Analytic cond. $63.6697$
Root an. cond. $7.97932$
Motivic weight $18$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 495·2-s − 1.71e4·4-s − 3.35e6·5-s + 7.22e7·7-s + 1.38e8·8-s + 3.87e8·9-s + 1.66e9·10-s − 3.57e10·14-s − 6.39e10·16-s − 1.91e11·18-s − 3.01e11·19-s + 5.74e10·20-s + 7.44e12·25-s − 1.23e12·28-s − 2.64e13·31-s − 4.58e12·32-s − 2.42e14·35-s − 6.63e12·36-s + 1.49e14·38-s − 4.63e14·40-s + 6.40e14·41-s − 1.30e15·45-s − 4.84e14·47-s + 3.59e15·49-s − 3.68e15·50-s + 9.98e15·56-s − 1.47e16·59-s + ⋯
L(s)  = 1  − 0.966·2-s − 0.0653·4-s − 1.71·5-s + 1.79·7-s + 1.02·8-s + 9-s + 1.66·10-s − 1.73·14-s − 0.930·16-s − 0.966·18-s − 0.934·19-s + 0.112·20-s + 1.95·25-s − 0.116·28-s − 31-s − 0.130·32-s − 3.07·35-s − 0.0653·36-s + 0.903·38-s − 1.76·40-s + 1.95·41-s − 1.71·45-s − 0.432·47-s + 2.20·49-s − 1.88·50-s + 1.84·56-s − 1.70·59-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 31 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(19-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 31 ^{s/2} \, \Gamma_{\C}(s+9) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(31\)
Sign: $1$
Analytic conductor: \(63.6697\)
Root analytic conductor: \(7.97932\)
Motivic weight: \(18\)
Rational: yes
Arithmetic: yes
Character: $\chi_{31} (30, \cdot )$
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 31,\ (\ :9),\ 1)\)

Particular Values

\(L(\frac{19}{2})\) \(\approx\) \(0.9325914305\)
\(L(\frac12)\) \(\approx\) \(0.9325914305\)
\(L(10)\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad31 \( 1 + p^{9} T \)
good2 \( 1 + 495 T + p^{18} T^{2} \)
3 \( ( 1 - p^{9} T )( 1 + p^{9} T ) \)
5 \( 1 + 3355686 T + p^{18} T^{2} \)
7 \( 1 - 72260210 T + p^{18} T^{2} \)
11 \( ( 1 - p^{9} T )( 1 + p^{9} T ) \)
13 \( ( 1 - p^{9} T )( 1 + p^{9} T ) \)
17 \( ( 1 - p^{9} T )( 1 + p^{9} T ) \)
19 \( 1 + 301505744342 T + p^{18} T^{2} \)
23 \( ( 1 - p^{9} T )( 1 + p^{9} T ) \)
29 \( ( 1 - p^{9} T )( 1 + p^{9} T ) \)
37 \( ( 1 - p^{9} T )( 1 + p^{9} T ) \)
41 \( 1 - 640887818618322 T + p^{18} T^{2} \)
43 \( ( 1 - p^{9} T )( 1 + p^{9} T ) \)
47 \( 1 + 484327216285470 T + p^{18} T^{2} \)
53 \( ( 1 - p^{9} T )( 1 + p^{9} T ) \)
59 \( 1 + 14753739003245478 T + p^{18} T^{2} \)
61 \( ( 1 - p^{9} T )( 1 + p^{9} T ) \)
67 \( 1 - 33886344531727690 T + p^{18} T^{2} \)
71 \( 1 + 86260446147898062 T + p^{18} T^{2} \)
73 \( ( 1 - p^{9} T )( 1 + p^{9} T ) \)
79 \( ( 1 - p^{9} T )( 1 + p^{9} T ) \)
83 \( ( 1 - p^{9} T )( 1 + p^{9} T ) \)
89 \( ( 1 - p^{9} T )( 1 + p^{9} T ) \)
97 \( 1 - 1388340453162394370 T + p^{18} T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−12.67845650278808703327645762466, −11.35854022486146393672938933941, −10.63610399073561460039451573643, −8.885730664245830204405796122131, −7.910012607207070659030372306191, −7.38970743570324276010840878336, −4.69704901047632568819861724811, −4.09507367208330216107926038283, −1.71411407568811048568923496985, −0.63524853940931230639204006767, 0.63524853940931230639204006767, 1.71411407568811048568923496985, 4.09507367208330216107926038283, 4.69704901047632568819861724811, 7.38970743570324276010840878336, 7.910012607207070659030372306191, 8.885730664245830204405796122131, 10.63610399073561460039451573643, 11.35854022486146393672938933941, 12.67845650278808703327645762466

Graph of the $Z$-function along the critical line