L(s) = 1 | − 495·2-s − 1.71e4·4-s − 3.35e6·5-s + 7.22e7·7-s + 1.38e8·8-s + 3.87e8·9-s + 1.66e9·10-s − 3.57e10·14-s − 6.39e10·16-s − 1.91e11·18-s − 3.01e11·19-s + 5.74e10·20-s + 7.44e12·25-s − 1.23e12·28-s − 2.64e13·31-s − 4.58e12·32-s − 2.42e14·35-s − 6.63e12·36-s + 1.49e14·38-s − 4.63e14·40-s + 6.40e14·41-s − 1.30e15·45-s − 4.84e14·47-s + 3.59e15·49-s − 3.68e15·50-s + 9.98e15·56-s − 1.47e16·59-s + ⋯ |
L(s) = 1 | − 0.966·2-s − 0.0653·4-s − 1.71·5-s + 1.79·7-s + 1.02·8-s + 9-s + 1.66·10-s − 1.73·14-s − 0.930·16-s − 0.966·18-s − 0.934·19-s + 0.112·20-s + 1.95·25-s − 0.116·28-s − 31-s − 0.130·32-s − 3.07·35-s − 0.0653·36-s + 0.903·38-s − 1.76·40-s + 1.95·41-s − 1.71·45-s − 0.432·47-s + 2.20·49-s − 1.88·50-s + 1.84·56-s − 1.70·59-s + ⋯ |
Λ(s)=(=(31s/2ΓC(s)L(s)Λ(19−s)
Λ(s)=(=(31s/2ΓC(s+9)L(s)Λ(1−s)
Degree: |
2 |
Conductor: |
31
|
Sign: |
1
|
Analytic conductor: |
63.6697 |
Root analytic conductor: |
7.97932 |
Motivic weight: |
18 |
Rational: |
yes |
Arithmetic: |
yes |
Character: |
χ31(30,⋅)
|
Primitive: |
yes
|
Self-dual: |
yes
|
Analytic rank: |
0
|
Selberg data: |
(2, 31, ( :9), 1)
|
Particular Values
L(219) |
≈ |
0.9325914305 |
L(21) |
≈ |
0.9325914305 |
L(10) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 31 | 1+p9T |
good | 2 | 1+495T+p18T2 |
| 3 | (1−p9T)(1+p9T) |
| 5 | 1+3355686T+p18T2 |
| 7 | 1−72260210T+p18T2 |
| 11 | (1−p9T)(1+p9T) |
| 13 | (1−p9T)(1+p9T) |
| 17 | (1−p9T)(1+p9T) |
| 19 | 1+301505744342T+p18T2 |
| 23 | (1−p9T)(1+p9T) |
| 29 | (1−p9T)(1+p9T) |
| 37 | (1−p9T)(1+p9T) |
| 41 | 1−640887818618322T+p18T2 |
| 43 | (1−p9T)(1+p9T) |
| 47 | 1+484327216285470T+p18T2 |
| 53 | (1−p9T)(1+p9T) |
| 59 | 1+14753739003245478T+p18T2 |
| 61 | (1−p9T)(1+p9T) |
| 67 | 1−33886344531727690T+p18T2 |
| 71 | 1+86260446147898062T+p18T2 |
| 73 | (1−p9T)(1+p9T) |
| 79 | (1−p9T)(1+p9T) |
| 83 | (1−p9T)(1+p9T) |
| 89 | (1−p9T)(1+p9T) |
| 97 | 1−1388340453162394370T+p18T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−12.67845650278808703327645762466, −11.35854022486146393672938933941, −10.63610399073561460039451573643, −8.885730664245830204405796122131, −7.910012607207070659030372306191, −7.38970743570324276010840878336, −4.69704901047632568819861724811, −4.09507367208330216107926038283, −1.71411407568811048568923496985, −0.63524853940931230639204006767,
0.63524853940931230639204006767, 1.71411407568811048568923496985, 4.09507367208330216107926038283, 4.69704901047632568819861724811, 7.38970743570324276010840878336, 7.910012607207070659030372306191, 8.885730664245830204405796122131, 10.63610399073561460039451573643, 11.35854022486146393672938933941, 12.67845650278808703327645762466