Properties

Label 2-31-31.30-c12-0-23
Degree $2$
Conductor $31$
Sign $1$
Analytic cond. $28.3338$
Root an. cond. $5.32295$
Motivic weight $12$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 97·2-s + 5.31e3·4-s + 2.92e4·5-s − 5.03e4·7-s + 1.18e5·8-s + 5.31e5·9-s + 2.83e6·10-s − 4.88e6·14-s − 1.03e7·16-s + 5.15e7·18-s + 1.86e7·19-s + 1.55e8·20-s + 6.12e8·25-s − 2.67e8·28-s + 8.87e8·31-s − 1.48e9·32-s − 1.47e9·35-s + 2.82e9·36-s + 1.80e9·38-s + 3.45e9·40-s − 5.83e9·41-s + 1.55e10·45-s + 7.96e9·47-s − 1.13e10·49-s + 5.93e10·50-s − 5.94e9·56-s − 6.56e10·59-s + ⋯
L(s)  = 1  + 1.51·2-s + 1.29·4-s + 1.87·5-s − 0.428·7-s + 0.450·8-s + 9-s + 2.83·10-s − 0.649·14-s − 0.614·16-s + 1.51·18-s + 0.396·19-s + 2.42·20-s + 2.50·25-s − 0.555·28-s + 31-s − 1.38·32-s − 0.802·35-s + 1.29·36-s + 0.600·38-s + 0.843·40-s − 1.22·41-s + 1.87·45-s + 0.738·47-s − 0.816·49-s + 3.80·50-s − 0.192·56-s − 1.55·59-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 31 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(13-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 31 ^{s/2} \, \Gamma_{\C}(s+6) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(31\)
Sign: $1$
Analytic conductor: \(28.3338\)
Root analytic conductor: \(5.32295\)
Motivic weight: \(12\)
Rational: yes
Arithmetic: yes
Character: $\chi_{31} (30, \cdot )$
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 31,\ (\ :6),\ 1)\)

Particular Values

\(L(\frac{13}{2})\) \(\approx\) \(6.199565984\)
\(L(\frac12)\) \(\approx\) \(6.199565984\)
\(L(7)\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad31 \( 1 - p^{6} T \)
good2 \( 1 - 97 T + p^{12} T^{2} \)
3 \( ( 1 - p^{6} T )( 1 + p^{6} T ) \)
5 \( 1 - 29266 T + p^{12} T^{2} \)
7 \( 1 + 50398 T + p^{12} T^{2} \)
11 \( ( 1 - p^{6} T )( 1 + p^{6} T ) \)
13 \( ( 1 - p^{6} T )( 1 + p^{6} T ) \)
17 \( ( 1 - p^{6} T )( 1 + p^{6} T ) \)
19 \( 1 - 18650162 T + p^{12} T^{2} \)
23 \( ( 1 - p^{6} T )( 1 + p^{6} T ) \)
29 \( ( 1 - p^{6} T )( 1 + p^{6} T ) \)
37 \( ( 1 - p^{6} T )( 1 + p^{6} T ) \)
41 \( 1 + 5832937118 T + p^{12} T^{2} \)
43 \( ( 1 - p^{6} T )( 1 + p^{6} T ) \)
47 \( 1 - 7960245442 T + p^{12} T^{2} \)
53 \( ( 1 - p^{6} T )( 1 + p^{6} T ) \)
59 \( 1 + 65635334318 T + p^{12} T^{2} \)
61 \( ( 1 - p^{6} T )( 1 + p^{6} T ) \)
67 \( 1 + 163049095438 T + p^{12} T^{2} \)
71 \( 1 + 175443432158 T + p^{12} T^{2} \)
73 \( ( 1 - p^{6} T )( 1 + p^{6} T ) \)
79 \( ( 1 - p^{6} T )( 1 + p^{6} T ) \)
83 \( ( 1 - p^{6} T )( 1 + p^{6} T ) \)
89 \( ( 1 - p^{6} T )( 1 + p^{6} T ) \)
97 \( 1 - 1601076090242 T + p^{12} T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−13.75328513806506796312709347707, −13.29480697601699309174747576576, −12.25213639546959925837410473330, −10.40047624323426198151318492465, −9.354213755740272463729800126823, −6.78450523155803507121879541465, −5.85126863394289819991167382666, −4.67670584451918799826720606738, −2.95255408877476123530271839540, −1.62150884721752149568212367164, 1.62150884721752149568212367164, 2.95255408877476123530271839540, 4.67670584451918799826720606738, 5.85126863394289819991167382666, 6.78450523155803507121879541465, 9.354213755740272463729800126823, 10.40047624323426198151318492465, 12.25213639546959925837410473330, 13.29480697601699309174747576576, 13.75328513806506796312709347707

Graph of the $Z$-function along the critical line