L(s) = 1 | + 97·2-s + 5.31e3·4-s + 2.92e4·5-s − 5.03e4·7-s + 1.18e5·8-s + 5.31e5·9-s + 2.83e6·10-s − 4.88e6·14-s − 1.03e7·16-s + 5.15e7·18-s + 1.86e7·19-s + 1.55e8·20-s + 6.12e8·25-s − 2.67e8·28-s + 8.87e8·31-s − 1.48e9·32-s − 1.47e9·35-s + 2.82e9·36-s + 1.80e9·38-s + 3.45e9·40-s − 5.83e9·41-s + 1.55e10·45-s + 7.96e9·47-s − 1.13e10·49-s + 5.93e10·50-s − 5.94e9·56-s − 6.56e10·59-s + ⋯ |
L(s) = 1 | + 1.51·2-s + 1.29·4-s + 1.87·5-s − 0.428·7-s + 0.450·8-s + 9-s + 2.83·10-s − 0.649·14-s − 0.614·16-s + 1.51·18-s + 0.396·19-s + 2.42·20-s + 2.50·25-s − 0.555·28-s + 31-s − 1.38·32-s − 0.802·35-s + 1.29·36-s + 0.600·38-s + 0.843·40-s − 1.22·41-s + 1.87·45-s + 0.738·47-s − 0.816·49-s + 3.80·50-s − 0.192·56-s − 1.55·59-s + ⋯ |
Λ(s)=(=(31s/2ΓC(s)L(s)Λ(13−s)
Λ(s)=(=(31s/2ΓC(s+6)L(s)Λ(1−s)
Degree: |
2 |
Conductor: |
31
|
Sign: |
1
|
Analytic conductor: |
28.3338 |
Root analytic conductor: |
5.32295 |
Motivic weight: |
12 |
Rational: |
yes |
Arithmetic: |
yes |
Character: |
χ31(30,⋅)
|
Primitive: |
yes
|
Self-dual: |
yes
|
Analytic rank: |
0
|
Selberg data: |
(2, 31, ( :6), 1)
|
Particular Values
L(213) |
≈ |
6.199565984 |
L(21) |
≈ |
6.199565984 |
L(7) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 31 | 1−p6T |
good | 2 | 1−97T+p12T2 |
| 3 | (1−p6T)(1+p6T) |
| 5 | 1−29266T+p12T2 |
| 7 | 1+50398T+p12T2 |
| 11 | (1−p6T)(1+p6T) |
| 13 | (1−p6T)(1+p6T) |
| 17 | (1−p6T)(1+p6T) |
| 19 | 1−18650162T+p12T2 |
| 23 | (1−p6T)(1+p6T) |
| 29 | (1−p6T)(1+p6T) |
| 37 | (1−p6T)(1+p6T) |
| 41 | 1+5832937118T+p12T2 |
| 43 | (1−p6T)(1+p6T) |
| 47 | 1−7960245442T+p12T2 |
| 53 | (1−p6T)(1+p6T) |
| 59 | 1+65635334318T+p12T2 |
| 61 | (1−p6T)(1+p6T) |
| 67 | 1+163049095438T+p12T2 |
| 71 | 1+175443432158T+p12T2 |
| 73 | (1−p6T)(1+p6T) |
| 79 | (1−p6T)(1+p6T) |
| 83 | (1−p6T)(1+p6T) |
| 89 | (1−p6T)(1+p6T) |
| 97 | 1−1601076090242T+p12T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−13.75328513806506796312709347707, −13.29480697601699309174747576576, −12.25213639546959925837410473330, −10.40047624323426198151318492465, −9.354213755740272463729800126823, −6.78450523155803507121879541465, −5.85126863394289819991167382666, −4.67670584451918799826720606738, −2.95255408877476123530271839540, −1.62150884721752149568212367164,
1.62150884721752149568212367164, 2.95255408877476123530271839540, 4.67670584451918799826720606738, 5.85126863394289819991167382666, 6.78450523155803507121879541465, 9.354213755740272463729800126823, 10.40047624323426198151318492465, 12.25213639546959925837410473330, 13.29480697601699309174747576576, 13.75328513806506796312709347707